BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35387607)

  • 1. High-resolution compressed sensing time-of-flight MR angiography outperforms CT angiography for evaluating patients with Moyamoya disease after surgical revascularization.
    Ren S; Wu W; Su C; Zhu Q; Schmidt M; Sun Y; Forman C; Speier P; Hong X; Lu S
    BMC Med Imaging; 2022 Apr; 22(1):64. PubMed ID: 35387607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of 7.0- and 3.0-T MRI and MRA in ischemic-type moyamoya disease: preliminary experience.
    Deng X; Zhang Z; Zhang Y; Zhang D; Wang R; Ye X; Xu L; Wang B; Wang K; Zhao J
    J Neurosurg; 2016 Jun; 124(6):1716-25. PubMed ID: 26544772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic resonance angiography with compressed sensing: An evaluation of moyamoya disease.
    Yamamoto T; Okada T; Fushimi Y; Yamamoto A; Fujimoto K; Okuchi S; Fukutomi H; Takahashi JC; Funaki T; Miyamoto S; Stalder AF; Natsuaki Y; Speier P; Togashi K
    PLoS One; 2018; 13(1):e0189493. PubMed ID: 29351284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of extracranial-intracranial bypass in Moyamoya disease using 3T time-of-flight MR angiography: comparison with CT angiography.
    Chen Q; Qi R; Cheng X; Zhou C; Luo S; Ni L; Huang W
    Vasa; 2014 Jul; 43(4):278-83. PubMed ID: 25007906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superior Visualization of Neovascularization with Silent Magnetic Resonance Angiography Compared to Time-of-Flight Magnetic Resonance Angiography After Bypass Surgery in Moyamoya Disease.
    Suzuki T; Hasegawa H; Okamoto K; Shibuya K; Takahashi H; Fujiwara H; Oishi M; Fujii Y
    World Neurosurg; 2023 Jul; 175():e1292-e1299. PubMed ID: 37149090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly accelerated compressed sensing time-of-flight magnetic resonance angiography may be reliable for diagnosing head and neck arterial steno-occlusive disease: a comparative study with digital subtraction angiography.
    Zhang X; Cao YZ; Mu XH; Sun Y; Schmidt M; Forman C; Speier P; Lu SS; Hong XN
    Eur Radiol; 2020 Jun; 30(6):3059-3065. PubMed ID: 32064562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Cerebral Hyperperfusion after Superficial Temporal Artery-Middle Cerebral Artery Anastomosis by Three-Dimensional-Time-of-Flight Magnetic Resonance Angiography in Adult Patients with Moyamoya Disease.
    Nishizawa T; Fujimura M; Katsuki M; Mugikura S; Tashiro R; Sato K; Tominaga T
    Cerebrovasc Dis; 2020; 49(4):396-403. PubMed ID: 32829323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel application of four-dimensional magnetic resonance angiography using an arterial spin labeling technique for noninvasive diagnosis of Moyamoya disease.
    Uchino H; Ito M; Fujima N; Kazumata K; Yamazaki K; Nakayama N; Kuroda S; Houkin K
    Clin Neurol Neurosurg; 2015 Oct; 137():105-11. PubMed ID: 26185929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly accelerated time-of-flight magnetic resonance angiography using spiral imaging improves conspicuity of intracranial arterial branches while reducing scan time.
    Greve T; Sollmann N; Hock A; Hey S; Gnanaprakasam V; Nijenhuis M; Zimmer C; Kirschke JS
    Eur Radiol; 2020 Feb; 30(2):855-865. PubMed ID: 31664504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of cerebral arteriovenous shunts: a comparison of parallel imaging time-of-flight magnetic resonance angiography (TOF-MRA) and compressed sensing TOF-MRA to digital subtraction angiography.
    Sakata A; Fushimi Y; Okada T; Nakajima S; Hinoda T; Speier P; Schmidt M; Forman C; Yoshida K; Kataoka H; Miyamoto S; Nakamoto Y
    Neuroradiology; 2021 Jun; 63(6):879-887. PubMed ID: 33063222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-of-Flight MR Angiography for Detection of Cerebral Hyperperfusion Syndrome after Superficial Temporal Artery-Middle Cerebral Artery Anastomosis in Moyamoya Disease.
    Sato K; Yamada M; Kuroda H; Yamamoto D; Asano Y; Inoue Y; Fujii K; Kumabe T
    AJNR Am J Neuroradiol; 2016 Jul; 37(7):1244-8. PubMed ID: 26939637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vessel-selective 4D MRA based on ASL might potentially show better performance than 3D TOF MRA for treatment evaluation in patients with intra-extracranial bypass surgery: a prospective study.
    Wang M; Yang Y; Wang Y; Li M; Zhang J; Zhang B
    Eur Radiol; 2021 Jul; 31(7):5263-5271. PubMed ID: 33386981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Pathological Opacification of the Cavernous Sinus on Brain CT Angiography: Comparison with Flow-Related Signal Intensity on Time-of-Flight MR Angiography.
    Heo SA; Kim ES; Lee Y; Lee SM; Lee K; Yoon DY; Ju YS; Kwon MJ
    Healthcare (Basel); 2021 Jan; 9(1):. PubMed ID: 33477473
    [No Abstract]   [Full Text] [Related]  

  • 14. Perfusion-weighted magnetic resonance imaging used in assessing hemodynamics following superficial temporal artery-middle cerebral artery bypass in patients with Moyamoya disease.
    Li Z; Zhou P; Xiong Z; Ma Z; Wang S; Bian H; Chen J
    Cerebrovasc Dis; 2013; 35(5):455-60. PubMed ID: 23735877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Outcome Following Surgical Revascularization in Patients of Moyamoya Disease with Focus on Graft Patency and Angiographic Changes.
    Gupta SK; Narayanan R; Aggarwal A; Mohanty M; Ahuja C; Verma N; Praneeth K; Agarwal V
    Neurol India; 2021; 69(3):620-627. PubMed ID: 34169855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CT perfusion assessment of Moyamoya syndrome before and after direct revascularization (superficial temporal artery to middle cerebral artery bypass).
    Chen Y; Xu W; Guo X; Shi Z; Sun Z; Gao L; Jin F; Wang J; Chen W; Yang Y
    Eur Radiol; 2016 Jan; 26(1):254-61. PubMed ID: 25925360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance angiography evaluation of external carotid artery tributaries in moyamoya disease.
    Honda M; Kitagawa N; Tsutsumi K; Morikawa M; Nagata I; Kaminogo M
    Surg Neurol; 2005 Oct; 64(4):325-30. PubMed ID: 16182003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Follow-Up Assessment of Intracranial Aneurysms Treated with Endovascular Coiling: Comparison of Compressed Sensing and Parallel Imaging Time-of-Flight Magnetic Resonance Angiography.
    Vornetti G; Bartiromo F; Toni F; Dall'Olio M; Cirillo M; Speier P; Princiotta C; Schmidt M; Tonon C; ZacĂ  D; Lodi R; Cirillo L
    Tomography; 2022 Jun; 8(3):1608-1617. PubMed ID: 35736881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postoperative evaluation of superficial temporal artery-middle cerebral artery bypass using an MR angiography technique with combined white-blood and black-blood sequences.
    Tsuchiya K; Imai M; Nitatori T; Kimura T
    J Magn Reson Imaging; 2013 Sep; 38(3):671-6. PubMed ID: 23371861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between reduction in microvascular transit time after superficial temporal artery-middle cerebral artery bypass surgery for moyamoya disease and the development of postoperative hyperperfusion syndrome.
    Yang T; Higashino Y; Kataoka H; Hamano E; Maruyama D; Iihara K; Takahashi JC
    J Neurosurg; 2018 May; 128(5):1304-1310. PubMed ID: 28498060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.