These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 35387890)
1. Evolution of Bioactive Implants in Lateral Interbody Fusion. Chan JL; Bae HW; Harrison Farber S; Uribe JS; Eastlack RK; Walker CT Int J Spine Surg; 2022 Mar; 16(S1):S61-S68. PubMed ID: 35387890 [TBL] [Abstract][Full Text] [Related]
2. PEEK versus titanium cages in lateral lumbar interbody fusion: a comparative analysis of subsidence. Campbell PG; Cavanaugh DA; Nunley P; Utter PA; Kerr E; Wadhwa R; Stone M Neurosurg Focus; 2020 Sep; 49(3):E10. PubMed ID: 32871573 [TBL] [Abstract][Full Text] [Related]
3. Optimizing the Spinal Interbody Implant: Current Advances in Material Modification and Surface Treatment Technologies. Park PJ; Lehman RA Curr Rev Musculoskelet Med; 2020 Dec; 13(6):688-695. PubMed ID: 32816234 [TBL] [Abstract][Full Text] [Related]
5. Interbody Fusions in the Lumbar Spine: A Review. Verma R; Virk S; Qureshi S HSS J; 2020 Jul; 16(2):162-167. PubMed ID: 32523484 [TBL] [Abstract][Full Text] [Related]
6. 3D-printed titanium cages without bone graft outperform PEEK cages with autograft in an animal model. Laratta JL; Vivace BJ; López-Peña M; Guzón FM; Gonzalez-Cantalpeidra A; Jorge-Mora A; Villar-Liste RM; Pino-Lopez L; Lukyanchuk A; Taghizadeh EA; Pino-Minguez J Spine J; 2022 Jun; 22(6):1016-1027. PubMed ID: 34906741 [TBL] [Abstract][Full Text] [Related]
7. Poor Bone Quality, Multilevel Surgery, and Narrow and Tall Cages Are Associated with Intraoperative Endplate Injuries and Late-onset Cage Subsidence in Lateral Lumbar Interbody Fusion: A Systematic Review. Wu H; Shan Z; Zhao F; Cheung JPY Clin Orthop Relat Res; 2022 Jan; 480(1):163-188. PubMed ID: 34324459 [TBL] [Abstract][Full Text] [Related]
8. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Rao PJ; Pelletier MH; Walsh WR; Mobbs RJ Orthop Surg; 2014 May; 6(2):81-9. PubMed ID: 24890288 [TBL] [Abstract][Full Text] [Related]
9. Early Outcomes of Three-Dimensional-Printed Porous Titanium versus Polyetheretherketone Cage Implantation for Stand-Alone Lateral Lumbar Interbody Fusion in the Treatment of Symptomatic Adjacent Segment Degeneration. Adl Amini D; Moser M; Oezel L; Zhu J; Okano I; Shue J; Sama AA; Cammisa FP; Girardi FP; Hughes AP World Neurosurg; 2022 Jun; 162():e14-e20. PubMed ID: 34863938 [TBL] [Abstract][Full Text] [Related]
10. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. McGilvray KC; Easley J; Seim HB; Regan D; Berven SH; Hsu WK; Mroz TE; Puttlitz CM Spine J; 2018 Jul; 18(7):1250-1260. PubMed ID: 29496624 [TBL] [Abstract][Full Text] [Related]
11. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Laubach M; Kobbe P; Hutmacher DW Biomaterials; 2022 Sep; 288():121699. PubMed ID: 35995620 [TBL] [Abstract][Full Text] [Related]
12. Three-Dimensional-Printed Titanium Versus Polyetheretherketone Cages for Lumbar Interbody Fusion: A Systematic Review of Comparative In Vitro, Animal, and Human Studies. Patel NA; O’Bryant S; Rogers CD; Boyett CK; Chakravarti S; Gendreau J; Brown NJ; Pennington ZA; Hatcher NB; Kuo C; Diaz-Aguilar LD; Pham MH Neurospine; 2023 Jun; 20(2):451-463. PubMed ID: 37401063 [TBL] [Abstract][Full Text] [Related]
13. Novel Titanium Cages for Minimally Invasive Lateral Lumbar Interbody Fusion: First Assessment of Subsidence. Krafft PR; Osburn B; Vivas AC; Rao G; Alikhani P Spine Surg Relat Res; 2020; 4(2):171-177. PubMed ID: 32405565 [TBL] [Abstract][Full Text] [Related]
14. Lumbar interbody fusion rates with 3D-printed lamellar titanium cages using a silicate-substituted calcium phosphate bone graft. Mokawem M; Katzouraki G; Harman CL; Lee R J Clin Neurosci; 2019 Oct; 68():134-139. PubMed ID: 31351704 [TBL] [Abstract][Full Text] [Related]
15. Choice of Spinal Interbody Fusion Cage Material and Design Influences Subsidence and Osseointegration Performance. Fogel G; Martin N; Williams GM; Unger J; Yee-Yanagishita C; Pelletier M; Walsh W; Peng Y; Jekir M World Neurosurg; 2022 Jun; 162():e626-e634. PubMed ID: 35346883 [TBL] [Abstract][Full Text] [Related]
16. Evolution of polyetheretherketone (PEEK) and titanium interbody devices for spinal procedures: a comprehensive review of the literature. Muthiah N; Yolcu YU; Alan N; Agarwal N; Hamilton DK; Ozpinar A Eur Spine J; 2022 Oct; 31(10):2547-2556. PubMed ID: 35689111 [TBL] [Abstract][Full Text] [Related]
17. Arthrodesis Rate and Patient Reported Outcomes After Anterior Lumbar Interbody Fusion Utilizing a Plasma-Sprayed Titanium Coated PEEK Interbody Implant: A Retrospective, Observational Analysis. Sclafani JA; Bergen SR; Staples M; Liang K; Raiszadeh R Int J Spine Surg; 2017; 11(1):4. PubMed ID: 28377862 [TBL] [Abstract][Full Text] [Related]
18. Titanium vs. polyetheretherketone (PEEK) interbody fusion: Meta-analysis and review of the literature. Seaman S; Kerezoudis P; Bydon M; Torner JC; Hitchon PW J Clin Neurosci; 2017 Oct; 44():23-29. PubMed ID: 28736113 [TBL] [Abstract][Full Text] [Related]
19. Comparison of 3D-printed titanium-alloy, standard titanium-alloy, and PEEK interbody spacers in an ovine model. Van Horn MR; Beard R; Wang W; Cunningham BW; Mullinix KP; Allall M; Bucklen BS Spine J; 2021 Dec; 21(12):2097-2103. PubMed ID: 34029756 [TBL] [Abstract][Full Text] [Related]
20. Fusion assessment in standalone lateral lumbar interbody fusion: 3D-printed titanium versus polyetheretherketone (PEEK) cages. Adl Amini D; Moser M; Oezel L; Shue J; Pumberger M; Sama AA; Cammisa FP; Girardi FP; Hughes AP J Spine Surg; 2022 Sep; 8(3):323-332. PubMed ID: 36285103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]