BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35387989)

  • 41. Keeping our eyes on CRISPR: the "Atlas" of gene editing.
    Wang W; Hou J; Zheng N; Wang X; Zhang J
    Cell Biol Toxicol; 2019 Aug; 35(4):285-288. PubMed ID: 31165372
    [No Abstract]   [Full Text] [Related]  

  • 42. Interrogation of the dynamic properties of higher-order heterochromatin using CRISPR-dCas9.
    Gao Y; Han M; Shang S; Wang H; Qi LS
    Mol Cell; 2021 Oct; 81(20):4287-4299.e5. PubMed ID: 34428454
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization and Repurposing of Type I and Type II CRISPR-Cas Systems in Bacteria.
    Hidalgo-Cantabrana C; Goh YJ; Barrangou R
    J Mol Biol; 2019 Jan; 431(1):21-33. PubMed ID: 30261168
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three New Cs for CRISPR: Collateral, Communicate, Cooperate.
    Varble A; Marraffini LA
    Trends Genet; 2019 Jun; 35(6):446-456. PubMed ID: 31036344
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent advances in the CRISPR genome editing tool set.
    Moon SB; Kim DY; Ko JH; Kim YS
    Exp Mol Med; 2019 Nov; 51(11):1-11. PubMed ID: 31685795
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection.
    East-Seletsky A; O'Connell MR; Knight SC; Burstein D; Cate JH; Tjian R; Doudna JA
    Nature; 2016 Oct; 538(7624):270-273. PubMed ID: 27669025
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isolation of specific genomic regions and identification of associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR.
    Fujita T; Fujii H
    Methods Mol Biol; 2015; 1288():43-52. PubMed ID: 25827874
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Efficient genome editing in human pluripotent stem cells through CRISPR/Cas9].
    Liu GG; Li S; Wei YD; Zhang YX; Ding QR
    Yi Chuan; 2015 Nov; 37(11):1167-73. PubMed ID: 26582531
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expanding the Biologist's Toolkit with CRISPR-Cas9.
    Sternberg SH; Doudna JA
    Mol Cell; 2015 May; 58(4):568-74. PubMed ID: 26000842
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.
    Koike-Yusa H; Li Y; Tan EP; Velasco-Herrera Mdel C; Yusa K
    Nat Biotechnol; 2014 Mar; 32(3):267-73. PubMed ID: 24535568
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum.
    Özcan A; Pausch P; Linden A; Wulf A; Schühle K; Heider J; Urlaub H; Heimerl T; Bange G; Randau L
    Nat Microbiol; 2019 Jan; 4(1):89-96. PubMed ID: 30397343
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci.
    Chen B; Hu J; Almeida R; Liu H; Balakrishnan S; Covill-Cooke C; Lim WA; Huang B
    Nucleic Acids Res; 2016 May; 44(8):e75. PubMed ID: 26740581
    [TBL] [Abstract][Full Text] [Related]  

  • 53. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing.
    Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct Visualization of Native CRISPR Target Search in Live Bacteria Reveals Cascade DNA Surveillance Mechanism.
    Vink JNA; Martens KJA; Vlot M; McKenzie RE; Almendros C; Estrada Bonilla B; Brocken DJW; Hohlbein J; Brouns SJJ
    Mol Cell; 2020 Jan; 77(1):39-50.e10. PubMed ID: 31735642
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Manipulating complex chromatin folding via CRISPR-guided bioorthogonal chemistry.
    Qin G; Yang J; Zhao C; Ren J; Qu X
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2204725119. PubMed ID: 36037371
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CRISPR/Cas9-mediated knock-in of an optimized TetO repeat for live cell imaging of endogenous loci.
    Tasan I; Sustackova G; Zhang L; Kim J; Sivaguru M; HamediRad M; Wang Y; Genova J; Ma J; Belmont AS; Zhao H
    Nucleic Acids Res; 2018 Sep; 46(17):e100. PubMed ID: 29912475
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of CRISPR/Cas9 for Efficient Genome Editing in Toxoplasma gondii.
    Shen B; Brown K; Long S; Sibley LD
    Methods Mol Biol; 2017; 1498():79-103. PubMed ID: 27709570
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generation of Mouse Model (KI and CKO) via Easi-CRISPR.
    Shola DTN; Yang C; Han C; Norinsky R; Peraza RD
    Methods Mol Biol; 2021; 2224():1-27. PubMed ID: 33606203
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems.
    O'Connell MR
    J Mol Biol; 2019 Jan; 431(1):66-87. PubMed ID: 29940185
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiplex Generation, Tracking, and Functional Screening of Substitution Mutants Using a CRISPR/Retron System.
    Lim H; Jun S; Park M; Lim J; Jeong J; Lee JH; Bang D
    ACS Synth Biol; 2020 May; 9(5):1003-1009. PubMed ID: 32348672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.