BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35388083)

  • 1. Spatial cover and carbon fluxes of urbanized Sonoran Desert biological soil crusts.
    Gallas G; Pavao-Zuckerman M
    Sci Rep; 2022 Apr; 12(1):5794. PubMed ID: 35388083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of factors influencing the restoration of cyanobacteria-dominated biological soil crusts.
    Bu C; Wu S; Yang Y; Zheng M
    PLoS One; 2014; 9(3):e90049. PubMed ID: 24625498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning.
    Escolar C; Martínez I; Bowker MA; Maestre FT
    Philos Trans R Soc Lond B Biol Sci; 2012 Nov; 367(1606):3087-99. PubMed ID: 23045707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Nitrogen fixation potential of biological soil crusts in Heidaigou open coal mine, Inner Mongolia, China].
    Zhang P; Huang L; Hu YG; Zhao Y; Wu YC
    Ying Yong Sheng Tai Xue Bao; 2016 Feb; 27(2):436-44. PubMed ID: 27396115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil nitrogen and climate drive the positive effect of biological soil crusts on soil organic carbon sequestration in drylands: A Meta-analysis.
    Xu H; Zhang Y; Shao X; Liu N
    Sci Total Environ; 2022 Jan; 803():150030. PubMed ID: 34525688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency.
    Büdel B; Darienko T; Deutschewitz K; Dojani S; Friedl T; Mohr KI; Salisch M; Reisser W; Weber B
    Microb Ecol; 2009 Feb; 57(2):229-47. PubMed ID: 18850242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO2 efflux in two semiarid grasslands in southern Botswana.
    Thomas AD
    Philos Trans R Soc Lond B Biol Sci; 2012 Nov; 367(1606):3076-86. PubMed ID: 23045706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of cyanobacterial communities in temperate deserts: A cue for artificial inoculation of biological soil crusts.
    Wang J; Zhang P; Bao JT; Zhao JC; Song G; Yang HT; Huang L; He MZ; Li XR
    Sci Total Environ; 2020 Nov; 745():140970. PubMed ID: 32731072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Nitrogen fixation potential of biological soil crusts in southeast edge of Tengger Desert, Northwest China].
    Zhang P; Li XR; Zhang ZS; Pan YX; Liu YM; Su JQ
    Ying Yong Sheng Tai Xue Bao; 2012 Aug; 23(8):2157-64. PubMed ID: 23189693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reading and surviving the harsh conditions in desert biological soil crust: the cyanobacterial viewpoint.
    Xu HF; Raanan H; Dai GZ; Oren N; Berkowicz S; Murik O; Kaplan A; Qiu BS
    FEMS Microbiol Rev; 2021 Nov; 45(6):. PubMed ID: 34165541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China.
    Zhang B; Kong W; Wu N; Zhang Y
    J Basic Microbiol; 2016 Jun; 56(6):670-9. PubMed ID: 26947139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Biological Soil Crusts on Enzyme Activities and Microbial Community in Soils of an Arid Ecosystem.
    Ghiloufi W; Seo J; Kim J; Chaieb M; Kang H
    Microb Ecol; 2019 Jan; 77(1):201-216. PubMed ID: 29922904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential Responses of Dinitrogen Fixation, Diazotrophic Cyanobacteria and Ammonia Oxidation Reveal a Potential Warming-Induced Imbalance of the N-Cycle in Biological Soil Crusts.
    Zhou X; Smith H; Giraldo Silva A; Belnap J; Garcia-Pichel F
    PLoS One; 2016; 11(10):e0164932. PubMed ID: 27776160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional structure and cyanobacterial activity within a desert biological soil crust.
    Raanan H; Felde VJ; Peth S; Drahorad S; Ionescu D; Eshkol G; Treves H; Felix-Henningsen P; Berkowicz SM; Keren N; Horn R; Hagemann M; Kaplan A
    Environ Microbiol; 2016 Feb; 18(2):372-83. PubMed ID: 25809542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diel hysteresis between soil respiration and soil temperature in a biological soil crust covered desert ecosystem.
    Guan C; Li X; Zhang P; Chen Y
    PLoS One; 2018; 13(4):e0195606. PubMed ID: 29624606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Export of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands.
    Johnson SL; Neuer S; Garcia-Pichel F
    Environ Microbiol; 2007 Mar; 9(3):680-9. PubMed ID: 17298368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Greenhouse gases fluxes of biological soil crusts and soil ecosystem in the artificial sand-fixing vegetation region in Shapotou area].
    Hu YG; Feng YL; Zhang ZS; Huang L; Zhang P; Xu BX
    Ying Yong Sheng Tai Xue Bao; 2014 Jan; 25(1):61-8. PubMed ID: 24765843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precipitation pulse size effects on Sonoran Desert soil microbial crusts.
    Cable JM; Huxman TE
    Oecologia; 2004 Oct; 141(2):317-24. PubMed ID: 14669007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Development and succession of biological soil crusts and the changes of microbial biomasses].
    Wu L; Zhang GK; Chen XG; Lan SB; Zhang DL; Hu CX
    Huan Jing Ke Xue; 2014 Apr; 35(4):1479-85. PubMed ID: 24946606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of desert biological soil crusts to alterations in precipitation frequency.
    Belnap J; Phillips SL; Miller ME
    Oecologia; 2004 Oct; 141(2):306-16. PubMed ID: 14689292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.