BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 35388737)

  • 1. Preferential translation of p53 target genes.
    Hisaoka M; Schott J; Bortecen T; Lindner D; Krijgsveld J; Stoecklin G
    RNA Biol; 2022; 19(1):437-452. PubMed ID: 35388737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IRES mediated translational regulation of p53 isoforms.
    Sharathchandra A; Katoch A; Das S
    Wiley Interdiscip Rev RNA; 2014; 5(1):131-9. PubMed ID: 24343861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p53-mediated control of gene expression via mRNA translation during Endoplasmic Reticulum stress.
    López I; Tournillon AS; Nylander K; Fåhraeus R
    Cell Cycle; 2015; 14(21):3373-8. PubMed ID: 26397130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The translation initiation factor DAP5 promotes IRES-driven translation of p53 mRNA.
    Weingarten-Gabbay S; Khan D; Liberman N; Yoffe Y; Bialik S; Das S; Oren M; Kimchi A
    Oncogene; 2014 Jan; 33(5):611-8. PubMed ID: 23318444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible induction of translational isoforms of p53 in glucose deprivation.
    Khan D; Katoch A; Das A; Sharathchandra A; Lal R; Roy P; Das S; Chattopadhyay S; Das S
    Cell Death Differ; 2015 Jul; 22(7):1203-18. PubMed ID: 25721046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA damage stress induces the expression of ribosomal protein S27a gene in a p53-dependent manner.
    Nosrati N; Kapoor NR; Kumar V
    Gene; 2015 Mar; 559(1):44-51. PubMed ID: 25592822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acrolein preferentially damages nucleolus eliciting ribosomal stress and apoptosis in human cancer cells.
    Wang HT; Chen TY; Weng CW; Yang CH; Tang MS
    Oncotarget; 2016 Dec; 7(49):80450-80464. PubMed ID: 27741518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The identification of an internal ribosomal entry site in the 5'-untranslated region of p53 mRNA provides a novel mechanism for the regulation of its translation following DNA damage.
    Yang DQ; Halaby MJ; Zhang Y
    Oncogene; 2006 Aug; 25(33):4613-9. PubMed ID: 16607284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction.
    Fumagalli S; Di Cara A; Neb-Gulati A; Natt F; Schwemberger S; Hall J; Babcock GF; Bernardi R; Pandolfi PP; Thomas G
    Nat Cell Biol; 2009 Apr; 11(4):501-8. PubMed ID: 19287375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P19ARF and RasV¹² offer opposing regulation of DHX33 translation to dictate tumor cell fate.
    Zhang Y; Saporita AJ; Weber JD
    Mol Cell Biol; 2013 Apr; 33(8):1594-607. PubMed ID: 23401854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbation of RNA Polymerase I transcription machinery by ablation of HEATR1 triggers the RPL5/RPL11-MDM2-p53 ribosome biogenesis stress checkpoint pathway in human cells.
    Turi Z; Senkyrikova M; Mistrik M; Bartek J; Moudry P
    Cell Cycle; 2018; 17(1):92-101. PubMed ID: 29143558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two internal ribosome entry sites mediate the translation of p53 isoforms.
    Ray PS; Grover R; Das S
    EMBO Rep; 2006 Apr; 7(4):404-10. PubMed ID: 16440000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Context is key: Understanding the regulation, functional control, and activities of the p53 tumour suppressor.
    Moxley AH; Reisman D
    Cell Biochem Funct; 2021 Mar; 39(2):235-247. PubMed ID: 32996618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TRIM8 modulates p53 activity to dictate cell cycle arrest.
    Caratozzolo MF; Micale L; Turturo MG; Cornacchia S; Fusco C; Marzano F; Augello B; D'Erchia AM; Guerrini L; Pesole G; Sbisà E; Merla G; Tullo A
    Cell Cycle; 2012 Feb; 11(3):511-23. PubMed ID: 22262183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting translational regulation by change point analysis of ribosome profiling data sets.
    Zupanic A; Meplan C; Grellscheid SN; Mathers JC; Kirkwood TB; Hesketh JE; Shanley DP
    RNA; 2014 Oct; 20(10):1507-18. PubMed ID: 25147239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of TP53 mutational status on gene expression patterns across 10 human cancer types.
    Parikh N; Hilsenbeck S; Creighton CJ; Dayaram T; Shuck R; Shinbrot E; Xi L; Gibbs RA; Wheeler DA; Donehower LA
    J Pathol; 2014 Apr; 232(5):522-33. PubMed ID: 24374933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p53 activation results in rapid dephosphorylation of the eIF4E-binding protein 4E-BP1, inhibition of ribosomal protein S6 kinase and inhibition of translation initiation.
    Horton LE; Bushell M; Barth-Baus D; Tilleray VJ; Clemens MJ; Hensold JO
    Oncogene; 2002 Aug; 21(34):5325-34. PubMed ID: 12149653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new twist in the feedback loop: stress-activated MDM2 destabilization is required for p53 activation.
    Stommel JM; Wahl GM
    Cell Cycle; 2005 Mar; 4(3):411-7. PubMed ID: 15684615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased translation of p21waf1 mRNA causes attenuated p53 signaling in some p53 wild-type tumors.
    Chang LJ; Eastman A
    Cell Cycle; 2012 May; 11(9):1818-26. PubMed ID: 22510560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosome Profiling Reveals Translational Upregulation of Cellular Oxidative Phosphorylation mRNAs during Vaccinia Virus-Induced Host Shutoff.
    Dai A; Cao S; Dhungel P; Luan Y; Liu Y; Xie Z; Yang Z
    J Virol; 2017 Mar; 91(5):. PubMed ID: 28003488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.