BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35388868)

  • 1. Enhanced room-temperature terahertz detection and imaging derived from anti-reflection 2D perovskite layer on MAPbI
    Li J; Zou Y; Hu D; Gu Y; Han Z; Liu J; Xu X
    Nanoscale; 2022 Apr; 14(16):6109-6117. PubMed ID: 35388868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic semiconductor nanogroove array enhanced broad spectral band millimetre and terahertz wave detection.
    Tong J; Suo F; Zhang T; Huang Z; Chu J; Zhang DH
    Light Sci Appl; 2021 Mar; 10(1):58. PubMed ID: 33723206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State-of-the-Art Room Temperature Operable Zero-Bias Schottky Diode-Based Terahertz Detector Up to 5.56 THz.
    Yadav R; Ludwig F; Faridi FR; Klopf JM; Roskos HG; Preu S; Penirschke A
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Performance of Room-Temperature NbSe
    Li J; Ma W; Jiang L; Yao N; Deng J; Qiu Q; Shi Y; Zhou W; Huang Z
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14331-14341. PubMed ID: 35289598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Microbolometer System for Radiation Detection in the THz Frequency Range with a Resonating Cavity Fabricated in the CMOS Technology.
    Sesek A; Zemva A; Trontelj J
    Recent Pat Nanotechnol; 2018 Feb; 12(1):34-44. PubMed ID: 28675992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High sensitivity of room-temperature terahertz photodetector based on silicon.
    Qiu Q; Ma W; Li J; Jiang L; Mao W; Lu X; Yao N; Shi Y; Huang Z
    iScience; 2022 Oct; 25(10):105217. PubMed ID: 36248728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrabroadband, Ultraviolet to Terahertz, and High Sensitivity CH
    Li Y; Zhang Y; Li T; Li M; Chen Z; Li Q; Zhao H; Sheng Q; Shi W; Yao J
    Nano Lett; 2020 Aug; 20(8):5646-5654. PubMed ID: 32609527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene.
    Zak A; Andersson MA; Bauer M; Matukas J; Lisauskas A; Roskos HG; Stake J
    Nano Lett; 2014 Oct; 14(10):5834-8. PubMed ID: 25203787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Annealing Temperature-Dependent Terahertz Thermal-Electrical Conversion Characteristics of Three-Dimensional Microporous Graphene.
    Chen M; Wang Y; Wen J; Chen H; Ma W; Fan F; Huang Y; Zhao Z
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6411-6420. PubMed ID: 30648383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. InGaAs Diodes for Terahertz Sensing-Effect of Molecular Beam Epitaxy Growth Conditions.
    Palenskis V; Minkevičius L; Matukas J; Jokubauskis D; Pralgauskaitė S; Seliuta D; Čechavičius B; Butkutė R; Valušis G
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid Perovskite Terahertz Photoconductive Antenna.
    Obraztsov PA; Bulgakova VV; Chizhov PA; Ushakov AA; Gets DS; Makarov SV; Bukin VV
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33530450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HBN-Encapsulated, Graphene-based, Room-temperature Terahertz Receivers, with High Speed and Low Noise.
    Viti L; Purdie DG; Lombardo A; Ferrari AC; Vitiello MS
    Nano Lett; 2020 May; 20(5):3169-3177. PubMed ID: 32301617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-Area and Broadband Thermoelectric Infrared Detection in a Carbon Nanotube Black-Body Absorber.
    Zhang M; Ban D; Xu C; Yeow JTW
    ACS Nano; 2019 Nov; 13(11):13285-13292. PubMed ID: 31715095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive Room-Temperature Graphene Photothermoelectric Terahertz Detector Based on Asymmetric Antenna Coupling Structure.
    Hong L; Wang L; Cai M; Yao Y; Guo X; Zhu Y
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Temperature Terahertz Detectors Realized by a GaN High Electron Mobility Transistor.
    Hou HW; Liu Z; Teng JH; Palacios T; Chua SJ
    Sci Rep; 2017 Apr; 7():46664. PubMed ID: 28429745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-Temperature Plasmon-Assisted Resonant THz Detection in Single-Layer Graphene Transistors.
    Caridad JM; Castelló Ó; López Baptista SM; Taniguchi T; Watanabe K; Roskos HG; Delgado-Notario JA
    Nano Lett; 2024 Jan; 24(3):935-942. PubMed ID: 38165655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic photo-conductance triggered by the plasmonic effect in graphene for terahertz detection.
    Wang L; Chen X; Lu W
    Nanotechnology; 2016 Jan; 27(3):035205. PubMed ID: 26655800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene.
    Cai X; Sushkov AB; Suess RJ; Jadidi MM; Jenkins GS; Nyakiti LO; Myers-Ward RL; Li S; Yan J; Gaskill DK; Murphy TE; Drew HD; Fuhrer MS
    Nat Nanotechnol; 2014 Oct; 9(10):814-9. PubMed ID: 25194945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive Terahertz Detection and Imaging Driven by the Photothermoelectric Effect in Ultrashort-Channel Black Phosphorus Devices.
    Guo W; Dong Z; Xu Y; Liu C; Wei D; Zhang L; Shi X; Guo C; Xu H; Chen G; Wang L; Zhang K; Chen X; Lu W
    Adv Sci (Weinh); 2020 Mar; 7(5):1902699. PubMed ID: 32154074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube terahertz detector.
    He X; Fujimura N; Lloyd JM; Erickson KJ; Talin AA; Zhang Q; Gao W; Jiang Q; Kawano Y; Hauge RH; Léonard F; Kono J
    Nano Lett; 2014 Jul; 14(7):3953-8. PubMed ID: 24875576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.