These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 35388882)
1. CRISPR and cardiovascular diseases. Musunuru K Cardiovasc Res; 2023 Mar; 119(1):79-93. PubMed ID: 35388882 [TBL] [Abstract][Full Text] [Related]
2. CRISPR technologies for the treatment of Duchenne muscular dystrophy. Choi E; Koo T Mol Ther; 2021 Nov; 29(11):3179-3191. PubMed ID: 33823301 [TBL] [Abstract][Full Text] [Related]
3. CRISPR-Based Gene Therapies: From Preclinical to Clinical Treatments. Laurent M; Geoffroy M; Pavani G; Guiraud S Cells; 2024 May; 13(10):. PubMed ID: 38786024 [TBL] [Abstract][Full Text] [Related]
4. Genome Editing of Monogenic Neuromuscular Diseases: A Systematic Review. Long C; Amoasii L; Bassel-Duby R; Olson EN JAMA Neurol; 2016 Nov; 73(11):1349-1355. PubMed ID: 27668807 [TBL] [Abstract][Full Text] [Related]
5. Translating genomic insights into cardiovascular medicine: Opportunities and challenges of CRISPR-Cas9. Zhang Y; Karakikes I Trends Cardiovasc Med; 2021 Aug; 31(6):341-348. PubMed ID: 32603681 [TBL] [Abstract][Full Text] [Related]
6. Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Li ZH; Wang J; Xu JP; Wang J; Yang X Mil Med Res; 2023 Mar; 10(1):12. PubMed ID: 36895064 [TBL] [Abstract][Full Text] [Related]
9. CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives. Chen G; Wei T; Yang H; Li G; Li H Cells; 2022 Sep; 11(19):. PubMed ID: 36230926 [TBL] [Abstract][Full Text] [Related]
10. Advances in CRISPR/Cas9 Genome Editing for the Treatment of Muscular Dystrophies. Fatehi S; Marks RM; Rok MJ; Perillat L; Ivakine EA; Cohn RD Hum Gene Ther; 2023 May; 34(9-10):388-403. PubMed ID: 37119122 [TBL] [Abstract][Full Text] [Related]
11. Gene Editing for Duchenne Muscular Dystrophy Using the CRISPR/Cas9 Technology: The Importance of Fine-tuning the Approach. Tremblay JP; Iyombe-Engembe JP; DuchĂȘne B; Ouellet DL Mol Ther; 2016 Nov; 24(11):1888-1889. PubMed ID: 27916992 [No Abstract] [Full Text] [Related]
12. Genome Editing: The Recent History and Perspective in Cardiovascular Diseases. Musunuru K J Am Coll Cardiol; 2017 Dec; 70(22):2808-2821. PubMed ID: 29191331 [TBL] [Abstract][Full Text] [Related]
14. Questions Answered and Unanswered by the First CRISPR Editing Study in a Canine Model of Duchenne Muscular Dystrophy. Wasala NB; Hakim CH; Chen SJ; Yang NN; Duan D Hum Gene Ther; 2019 May; 30(5):535-543. PubMed ID: 30648435 [TBL] [Abstract][Full Text] [Related]
15. CRISPR applications for Duchenne muscular dystrophy: From animal models to potential therapies. Chey YCJ; Arudkumar J; Aartsma-Rus A; Adikusuma F; Thomas PQ WIREs Mech Dis; 2023 Jan; 15(1):e1580. PubMed ID: 35909075 [TBL] [Abstract][Full Text] [Related]
17. The potential application and challenge of powerful CRISPR/Cas9 system in cardiovascular research. Li Y; Song YH; Liu B; Yu XY Int J Cardiol; 2017 Jan; 227():191-193. PubMed ID: 27847153 [TBL] [Abstract][Full Text] [Related]
18. Scalpel or Straitjacket: CRISPR/Cas9 Approaches for Muscular Dystrophies. Himeda CL; Jones TI; Jones PL Trends Pharmacol Sci; 2016 Apr; 37(4):249-251. PubMed ID: 26917062 [TBL] [Abstract][Full Text] [Related]
19. Therapeutic genome editing in cardiovascular diseases. Nishiga M; Qi LS; Wu JC Adv Drug Deliv Rev; 2021 Jan; 168():147-157. PubMed ID: 32092381 [TBL] [Abstract][Full Text] [Related]
20. No off-target mutations in functional genome regions of a CRISPR/Cas9-generated monkey model of muscular dystrophy. Wang S; Ren S; Bai R; Xiao P; Zhou Q; Zhou Y; Zhou Z; Niu Y; Ji W; Chen Y J Biol Chem; 2018 Jul; 293(30):11654-11658. PubMed ID: 29941452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]