BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 35389435)

  • 21. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks.
    Avsec Ž; Barekatain M; Cheng J; Gagneur J
    Bioinformatics; 2018 Apr; 34(8):1261-1269. PubMed ID: 29155928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DeepGenGrep: a general deep learning-based predictor for multiple genomic signals and regions.
    Liu Q; Fang H; Wang X; Wang M; Li S; Coin LJM; Li F; Song J
    Bioinformatics; 2022 Sep; 38(17):4053-4061. PubMed ID: 35799358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of mutation effects using a deep temporal convolutional network.
    Kim HY; Kim D
    Bioinformatics; 2020 Apr; 36(7):2047-2052. PubMed ID: 31746978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genomic benchmarks: a collection of datasets for genomic sequence classification.
    Grešová K; Martinek V; Čechák D; Šimeček P; Alexiou P
    BMC Genom Data; 2023 May; 24(1):25. PubMed ID: 37127596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide association study-based deep learning for survival prediction.
    Sun T; Wei Y; Chen W; Ding Y
    Stat Med; 2020 Dec; 39(30):4605-4620. PubMed ID: 32974946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated machine learning for genome wide association studies.
    Lakiotaki K; Papadovasilakis Z; Lagani V; Fafalios S; Charonyktakis P; Tsagris M; Tsamardinos I
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37672022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.
    Li Y; Shi W; Wasserman WW
    BMC Bioinformatics; 2018 May; 19(1):202. PubMed ID: 29855387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A semi-supervised deep learning approach for predicting the functional effects of genomic non-coding variations.
    Jia H; Park SJ; Nakai K
    BMC Bioinformatics; 2021 Jun; 22(Suppl 6):128. PubMed ID: 34078253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PALM: a powerful and adaptive latent model for prioritizing risk variants with functional annotations.
    Yu X; Xiao J; Cai M; Jiao Y; Wan X; Liu J; Yang C
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36744920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting target genes of non-coding regulatory variants with IRT.
    Wu Z; Ioannidis NM; Zou J
    Bioinformatics; 2020 Aug; 36(16):4440-4448. PubMed ID: 32330225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants.
    Wang K; Abid MA; Rasheed A; Crossa J; Hearne S; Li H
    Mol Plant; 2023 Jan; 16(1):279-293. PubMed ID: 36366781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transfer learning for drug-target interaction prediction.
    Dalkıran A; Atakan A; Rifaioğlu AS; Martin MJ; Atalay RÇ; Acar AC; Doğan T; Atalay V
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i103-i110. PubMed ID: 37387156
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RegVar: Tissue-specific Prioritization of Non-coding Regulatory Variants.
    Lu H; Ma L; Quan C; Li L; Lu Y; Zhou G; Zhang C
    Genomics Proteomics Bioinformatics; 2023 Apr; 21(2):385-395. PubMed ID: 34973416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An introduction to deep learning on biological sequence data: examples and solutions.
    Jurtz VI; Johansen AR; Nielsen M; Almagro Armenteros JJ; Nielsen H; Sønderby CK; Winther O; Sønderby SK
    Bioinformatics; 2017 Nov; 33(22):3685-3690. PubMed ID: 28961695
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SparkINFERNO: a scalable high-throughput pipeline for inferring molecular mechanisms of non-coding genetic variants.
    Kuksa PP; Lee CY; Amlie-Wolf A; Gangadharan P; Mlynarski EE; Chou YF; Lin HJ; Issen H; Greenfest-Allen E; Valladares O; Leung YY; Wang LS
    Bioinformatics; 2020 Jun; 36(12):3879-3881. PubMed ID: 32330239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SpliceRover: interpretable convolutional neural networks for improved splice site prediction.
    Zuallaert J; Godin F; Kim M; Soete A; Saeys Y; De Neve W
    Bioinformatics; 2018 Dec; 34(24):4180-4188. PubMed ID: 29931149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. End-to-end learning of evolutionary models to find coding regions in genome alignments.
    Mertsch D; Stanke M
    Bioinformatics; 2022 Mar; 38(7):1857-1862. PubMed ID: 35060608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNN-Dom: predicting protein domain boundary from sequence alone by deep neural network.
    Shi Q; Chen W; Huang S; Jin F; Dong Y; Wang Y; Xue Z
    Bioinformatics; 2019 Dec; 35(24):5128-5136. PubMed ID: 31197306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EnsembleSplice: ensemble deep learning model for splice site prediction.
    Akpokiro V; Martin T; Oluwadare O
    BMC Bioinformatics; 2022 Oct; 23(1):413. PubMed ID: 36203144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.