These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 35389607)
1. Experimental and Theoretical Studies of Ultrafine Pd-Based Biochar Catalyst for Dehydrogenation of Formic Acid and Application of In Situ Hydrogenation. Zou L; Liu Q; Zhu D; Huang Y; Mao Y; Luo X; Liang Z ACS Appl Mater Interfaces; 2022 Apr; 14(15):17282-17295. PubMed ID: 35389607 [TBL] [Abstract][Full Text] [Related]
2. The Role of Nitrogen-doping in the Catalytic Transfer Hydrogenation of Phenol to Cyclohexanone with Formic Acid over Pd supported on Carbon Nanotubes. Hu B; Li X; Busser W; Schmidt S; Xia W; Li G; Li X; Peng B Chemistry; 2021 Jul; 27(42):10948-10956. PubMed ID: 33998733 [TBL] [Abstract][Full Text] [Related]
3. Size-Dependent Catalytic Activity of Palladium Nanoparticles Fabricated in Porous Organic Polymers for Alkene Hydrogenation at Room Temperature. Mondal J; Trinh QT; Jana A; Ng WK; Borah P; Hirao H; Zhao Y ACS Appl Mater Interfaces; 2016 Jun; 8(24):15307-19. PubMed ID: 27258184 [TBL] [Abstract][Full Text] [Related]
4. A Palladium Catalyst Supported on Boron-Doped Porous Carbon for Efficient Dehydrogenation of Formic Acid. Liu H; Huang M; Tao W; Han L; Zhang J; Zhao Q Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535697 [TBL] [Abstract][Full Text] [Related]
5. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites. Wang L; Zhang B; Meng X; Su DS; Xiao FS ChemSusChem; 2014 Jun; 7(6):1537-41. PubMed ID: 24861954 [TBL] [Abstract][Full Text] [Related]
6. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon. Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650 [TBL] [Abstract][Full Text] [Related]
7. Biowaste soybean curd residue-derived Pd/nitrogen-doped porous carbon with excellent catalytic performance for phenol hydrogenation. Zhu Y; Yu G; Yang J; Yuan M; Xu D; Dong Z J Colloid Interface Sci; 2019 Jan; 533():259-267. PubMed ID: 30170277 [TBL] [Abstract][Full Text] [Related]
8. Ultrasmall Pd nanoparticles supported on a metal-organic framework DUT-67-PZDC for enhanced formic acid dehydrogenation. Zhou C; Zhang R; Hu J; Yao C; Liu Z; Duan A; Wang X J Colloid Interface Sci; 2024 Nov; 673():997-1006. PubMed ID: 39002361 [TBL] [Abstract][Full Text] [Related]
9. Highly selective hydrogenation of phenol to cyclohexanone over a Pd-loaded N-doped carbon catalyst derived from chitosan. Wu Q; Wang L; Zhao B; Huang L; Yu S; Ragauskas AJ J Colloid Interface Sci; 2022 Jan; 605():82-90. PubMed ID: 34311315 [TBL] [Abstract][Full Text] [Related]
10. Efficient hydrogen production from formic acid dehydrogenation over ultrasmall PdIr nanoparticles on amine-functionalized yolk-shell mesoporous silica. Chai H; Hu J; Zhang R; Feng Y; Li H; Liu Z; Zhou C; Wang X J Colloid Interface Sci; 2025 Jan; 678(Pt C):261-271. PubMed ID: 39298977 [TBL] [Abstract][Full Text] [Related]
11. Complete dechlorination of lindane over N-doped porous carbon supported Pd catalyst at room temperature and atmospheric pressure. Yang J; Qi X; Shen F; Qiu M; Smith RL Sci Total Environ; 2020 Jun; 719():137534. PubMed ID: 32135324 [TBL] [Abstract][Full Text] [Related]
12. Amine-Functionalized Carbon Bowl-Supported Pd-La(OH) Sun X; Zhang G; Yao Q; Li H; Feng G; Lu ZH Inorg Chem; 2022 Nov; 61(45):18102-18111. PubMed ID: 36325636 [TBL] [Abstract][Full Text] [Related]
14. Efficient synthesis of highly dispersed ultrafine Pd nanoparticles on a porous organic polymer for hydrogenation of CO Shao X; Miao X; Yu X; Wang W; Ji X RSC Adv; 2020 Mar; 10(16):9414-9419. PubMed ID: 35497209 [TBL] [Abstract][Full Text] [Related]
15. Single-ion chelation strategy for synthesis of monodisperse Pd nanoparticles anchored in MOF-808 for highly efficient hydrogenation and cascade reactions. Zhao K; Zhang LX; Xu H; Liu YF; Tang B; Bie LJ Nanoscale; 2022 Aug; 14(30):10980-10991. PubMed ID: 35861189 [TBL] [Abstract][Full Text] [Related]
16. Highly Efficient Dehydrogenation of Formic Acid over Binary Palladium-Phosphorous Alloy Nanoclusters on N-Doped Carbon. Zhu L; Liang Y; Sun L; Wang J; Xu D Inorg Chem; 2021 Jul; 60(14):10707-10714. PubMed ID: 34196533 [TBL] [Abstract][Full Text] [Related]
17. Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation of Biomass by Superhydrophilic Nitrogen/Oxygen Co-Doped Porous Carbon Nanosphere Supported Pd Nanoparticles. Yu H; Xu Y; Havener K; Zhang M; Zhang L; Wu W; Huang K Small; 2022 Apr; 18(16):e2106893. PubMed ID: 35254000 [TBL] [Abstract][Full Text] [Related]
18. Ordered Porous Nitrogen-Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of N-Heterocycles. Han Y; Wang Z; Xu R; Zhang W; Chen W; Zheng L; Zhang J; Luo J; Wu K; Zhu Y; Chen C; Peng Q; Liu Q; Hu P; Wang D; Li Y Angew Chem Int Ed Engl; 2018 Aug; 57(35):11262-11266. PubMed ID: 29978942 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Catalytic Performance of N-Doped Carbon Sphere-Supported Pd Nanoparticles by Secondary Nitrogen Source Regulation for Formic Acid Dehydrogenation. Deng M; Yang A; Ma J; Yang C; Cao T; Yang S; Yao M; Liu F; Wang X; Cao J ACS Appl Mater Interfaces; 2022 Apr; 14(16):18550-18560. PubMed ID: 35412790 [TBL] [Abstract][Full Text] [Related]
20. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. Wang Y; Yao J; Li H; Su D; Antonietti M J Am Chem Soc; 2011 Mar; 133(8):2362-5. PubMed ID: 21294506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]