These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35389631)

  • 1. OptDesign: Identifying Optimum Design Strategies in Strain Engineering for Biochemical Production.
    Jiang S; Otero-Muras I; Banga JR; Wang Y; Kaiser M; Krasnogor N
    ACS Synth Biol; 2022 Apr; 11(4):1531-1541. PubMed ID: 35389631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NIHBA: a network interdiction approach for metabolic engineering design.
    Jiang S; Wang Y; Kaiser M; Krasnogor N
    Bioinformatics; 2020 Jun; 36(11):3482-3492. PubMed ID: 32167529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints.
    Ren S; Zeng B; Qian X
    BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S17. PubMed ID: 23368729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal knockout strategies in genome-scale metabolic networks using particle swarm optimization.
    Nair G; Jungreuthmayer C; Zanghellini J
    BMC Bioinformatics; 2017 Feb; 18(1):78. PubMed ID: 28143607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli genome-scale metabolic gene knockout of lactate dehydrogenase (ldhA), increases succinate production from glycerol.
    Mienda BS
    J Biomol Struct Dyn; 2018 Nov; 36(14):3680-3686. PubMed ID: 29057718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GeneReg: a constraint-based approach for design of feasible metabolic engineering strategies at the gene level.
    Razaghi-Moghadam Z; Nikoloski Z
    Bioinformatics; 2021 Jul; 37(12):1717-1723. PubMed ID: 33245091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization approaches for the in silico discovery of optimal targets for gene over/underexpression.
    Gonçalves E; Pereira R; Rocha I; Rocha M
    J Comput Biol; 2012 Feb; 19(2):102-14. PubMed ID: 22300313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties.
    Melzer G; Esfandabadi ME; Franco-Lara E; Wittmann C
    BMC Syst Biol; 2009 Dec; 3():120. PubMed ID: 20035624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale bi-level strain design approaches and mixed-integer programming solution techniques.
    Kim J; Reed JL; Maravelias CT
    PLoS One; 2011; 6(9):e24162. PubMed ID: 21949695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions.
    Ranganathan S; Suthers PF; Maranas CD
    PLoS Comput Biol; 2010 Apr; 6(4):e1000744. PubMed ID: 20419153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Truncated branch and bound achieves efficient constraint-based genetic design.
    Egen D; Lun DS
    Bioinformatics; 2012 Jun; 28(12):1619-23. PubMed ID: 22543499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust mutant strain design by pessimistic optimization.
    Apaydin M; Xu L; Zeng B; Qian X
    BMC Genomics; 2017 Oct; 18(Suppl 6):677. PubMed ID: 28984191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico screening of triple reaction knockout Escherichia coli strains for overproduction of useful metabolites.
    Ohno S; Furusawa C; Shimizu H
    J Biosci Bioeng; 2013 Feb; 115(2):221-8. PubMed ID: 23041138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constraint-based modeling of heterologous pathways: application and experimental demonstration for overproduction of fatty acids in Escherichia coli.
    Ip K; Donoghue N; Kim MK; Lun DS
    Biotechnol Bioeng; 2014 Oct; 111(10):2056-66. PubMed ID: 24838438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systems Metabolic Engineering of Escherichia coli.
    Choi KR; Shin JH; Cho JS; Yang D; Lee SY
    EcoSal Plus; 2016 May; 7(1):. PubMed ID: 27223822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli.
    Harder BJ; Bettenbrock K; Klamt S
    Metab Eng; 2016 Nov; 38():29-37. PubMed ID: 27269589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico identification of gene amplification targets for improvement of lycopene production.
    Choi HS; Lee SY; Kim TY; Woo HM
    Appl Environ Microbiol; 2010 May; 76(10):3097-105. PubMed ID: 20348305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flux-sum analysis identifies metabolite targets for strain improvement.
    Lakshmanan M; Kim TY; Chung BK; Lee SY; Lee DY
    BMC Syst Biol; 2015 Oct; 9():73. PubMed ID: 26510838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of growth-coupling strategies and their underlying principles.
    Alter TB; Ebert BE
    BMC Bioinformatics; 2019 Aug; 20(1):447. PubMed ID: 31462231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.