BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 35389715)

  • 1. Salience by competitive and recurrent interactions: Bridging neural spiking and computation in visual attention.
    Cox GE; Palmeri TJ; Logan GD; Smith PL; Schall JD
    Psychol Rev; 2022 Oct; 129(5):1144-1182. PubMed ID: 35389715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience.
    Thompson KG; Bichot NP; Sato TR
    J Neurophysiol; 2005 Jan; 93(1):337-51. PubMed ID: 15317836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.
    Thompson KG; Hanes DP; Bichot NP; Schall JD
    J Neurophysiol; 1996 Dec; 76(6):4040-55. PubMed ID: 8985899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response variability of frontal eye field neurons modulates with sensory input and saccade preparation but not visual search salience.
    Purcell BA; Heitz RP; Cohen JY; Schall JD
    J Neurophysiol; 2012 Nov; 108(10):2737-50. PubMed ID: 22956785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Difficulty of visual search modulates neuronal interactions and response variability in the frontal eye field.
    Cohen JY; Pouget P; Woodman GF; Subraveti CR; Schall JD; Rossi AF
    J Neurophysiol; 2007 Nov; 98(5):2580-7. PubMed ID: 17855586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frontal eye field stimulation modulates the balance of salience between target and distractors.
    Walker R; Techawachirakul P; Haggard P
    Brain Res; 2009 May; 1270():54-63. PubMed ID: 19285965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search.
    Purcell BA; Schall JD; Logan GD; Palmeri TJ
    J Neurosci; 2012 Mar; 32(10):3433-46. PubMed ID: 22399766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural mechanisms of speed-accuracy tradeoff of visual search: saccade vigor, the origin of targeting errors, and comparison of the superior colliculus and frontal eye field.
    Reppert TR; Servant M; Heitz RP; Schall JD
    J Neurophysiol; 2018 Jul; 120(1):372-384. PubMed ID: 29668383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurally constrained modeling of speed-accuracy tradeoff during visual search: gated accumulation of modulated evidence.
    Servant M; Tillman G; Schall JD; Logan GD; Palmeri TJ
    J Neurophysiol; 2019 Apr; 121(4):1300-1314. PubMed ID: 30726163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural mechanisms of saccade target selection: gated accumulator model of the visual-motor cascade.
    Schall JD; Purcell BA; Heitz RP; Logan GD; Palmeri TJ
    Eur J Neurosci; 2011 Jun; 33(11):1991-2002. PubMed ID: 21645095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relation of frontal eye field activity to saccade initiation during a countermanding task.
    Brown JW; Hanes DP; Schall JD; Stuphorn V
    Exp Brain Res; 2008 Sep; 190(2):135-51. PubMed ID: 18604527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection and maintenance of spatial information by frontal eye field neurons.
    Armstrong KM; Chang MH; Moore T
    J Neurosci; 2009 Dec; 29(50):15621-9. PubMed ID: 20016076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Similar prevalence and magnitude of auditory-evoked and visually evoked activity in the frontal eye fields: implications for multisensory motor control.
    Caruso VC; Pages DS; Sommer MA; Groh JM
    J Neurophysiol; 2016 Jun; 115(6):3162-73. PubMed ID: 26936983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-or-None Context Dependence Delineates Limits of FEF Visual Target Selection.
    Scerra VE; Costello MG; Salinas E; Stanford TR
    Curr Biol; 2019 Jan; 29(2):294-305.e3. PubMed ID: 30639113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel programming of saccades in the macaque frontal eye field: are sequential motor plans coactivated?
    Basu D; Murthy A
    J Neurophysiol; 2020 Jan; 123(1):107-119. PubMed ID: 31721632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Prior Information to Saccade Selection: Evolution of Frontal Eye Field Activity during Natural Scene Search.
    Glaser JI; Wood DK; Lawlor PN; Segraves MA; Kording KP
    Cereb Cortex; 2020 Mar; 30(3):1957-1973. PubMed ID: 31647525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resilience of FEF neuronal saccade code to V4 perturbations.
    Shams M; Thier P; Lomber SG; Merrikhi Y
    J Neurophysiol; 2023 Nov; 130(5):1243-1251. PubMed ID: 37850785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation.
    Murthy A; Ray S; Shorter SM; Schall JD; Thompson KG
    J Neurophysiol; 2009 May; 101(5):2485-506. PubMed ID: 19261711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive activity in macaque frontal eye field neurons during natural scene searching.
    Phillips AN; Segraves MA
    J Neurophysiol; 2010 Mar; 103(3):1238-52. PubMed ID: 20018833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields.
    Schall JD
    J Neurophysiol; 1991 Aug; 66(2):559-79. PubMed ID: 1774586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.