These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35389859)

  • 1. Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications.
    Kang I; Molinaro DD; Choi G; Camargo J; Young AJ
    IEEE Trans Biomed Eng; 2022 Oct; 69(10):3234-3242. PubMed ID: 35389859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous locomotion mode classification using a robotic hip exoskeleton.
    Kang I; Molinaro DD; Choi G; Young AJ
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2020; 2020():376-381. PubMed ID: 35499063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Gait Phase Estimation for Robotic Hip Exoskeleton Control During Multimodal Locomotion.
    Kang I; Molinaro DD; Duggal S; Chen Y; Kunapuli P; Young AJ
    IEEE Robot Autom Lett; 2021 Apr; 6(2):3491-3497. PubMed ID: 34616899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions.
    Camargo J; Ramanathan A; Flanagan W; Young A
    J Biomech; 2021 Apr; 119():110320. PubMed ID: 33677231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons.
    Su B; Liu YX; Gutierrez-Farewik EM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer Vision and Deep Learning for Environment-Adaptive Control of Robotic Lower-Limb Exoskeletons.
    Laschowski B; McNally W; Wong A; McPhee J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4631-4635. PubMed ID: 34892246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Data-Driven Approach to Estimate Human Center of Mass State During Perturbed Locomotion Using Simulated Wearable Sensors.
    Leestma JK; Smith CR; Sawicki GS; Young AJ
    Ann Biomed Eng; 2024 Aug; 52(8):2013-2023. PubMed ID: 38558352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review on Locomotion Mode Recognition and Prediction When Using Active Orthoses and Exoskeletons.
    Moreira L; Figueiredo J; Cerqueira J; Santos CP
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Soft Sensor-Based Measurement of Interactive Force and Assistive Torque for a Robotic Hip Exoskeleton.
    Wang S; Zhang B; Yu Z; Yan Y
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Hierarchical Classification of Time Series Data for Locomotion Mode Detection.
    Narayan A; Reyes FA; Ren M; Haoyong Y
    IEEE J Biomed Health Inform; 2022 Apr; 26(4):1749-1760. PubMed ID: 34410932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated evaluation approach of wearable lower limb exoskeletons for human performance augmentation.
    Zhang X; Chen X; Huo B; Liu C; Zhu X; Zu Y; Wang X; Chen X; Sun Q
    Sci Rep; 2023 Mar; 13(1):4251. PubMed ID: 36918651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting biological joint moment during multiple ambulation tasks.
    Camargo J; Molinaro D; Young A
    J Biomech; 2022 Mar; 134():111020. PubMed ID: 35228154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Lower Limb Exoskeleton on the Modulation of Neural Activity and Gait Classification.
    Tortora S; Tonin L; Sieghartsleitner S; Ortner R; Guger C; Lennon O; Coyle D; Menegatti E; Felice AD
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2988-3003. PubMed ID: 37432820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Invariant hip moment pattern while walking with a robotic hip exoskeleton.
    Lewis CL; Ferris DP
    J Biomech; 2011 Mar; 44(5):789-93. PubMed ID: 21333995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Continuous Locomotion Mode Recognition and Transition Prediction for Human With Lower Limb Exoskeleton.
    Ma X; Liu Y; Zhang X; Masia L; Song Q
    IEEE J Biomed Health Inform; 2024 Sep; PP():. PubMed ID: 39288043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stair Recognition for Robotic Exoskeleton Control using Computer Vision and Deep Learning.
    Kurbis AG; Laschowski B; Mihailidis A
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes.
    Young AJ; Simon A; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary Design of an Environment Recognition System for Controlling Robotic Lower-Limb Prostheses and Exoskeletons.
    Laschowski B; McNally W; Wong A; McPhee J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():868-873. PubMed ID: 31374739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Walking Assistance Efficiency in Real-World Scenarios with Soft Exosuits Using Locomotion Mode Detection.
    Zhang X; Tricomi E; Missiroli F; Lotti N; Ma X; Masia L
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.