These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35390073)

  • 1. Clustering of fast gyrotactic particles in low-Reynolds-number flow.
    Almerol JLO; Liponhay MP
    PLoS One; 2022; 17(4):e0266611. PubMed ID: 35390073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turbulent fluid acceleration generates clusters of gyrotactic microorganisms.
    De Lillo F; Cencini M; Durham WM; Barry M; Stocker R; Climent E; Boffetta G
    Phys Rev Lett; 2014 Jan; 112(4):044502. PubMed ID: 24580457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors.
    Croze OA; Sardina G; Ahmed M; Bees MA; Brandt L
    J R Soc Interface; 2013 Apr; 10(81):20121041. PubMed ID: 23407572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gyrotactic phytoplankton in laminar and turbulent flows: A dynamical systems approach.
    Cencini M; Boffetta G; Borgnino M; De Lillo F
    Eur Phys J E Soft Matter; 2019 Mar; 42(3):31. PubMed ID: 30879226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential Sampling and Small-Scale Clustering of Gyrotactic Microswimmers in Turbulence.
    Gustavsson K; Berglund F; Jonsson PR; Mehlig B
    Phys Rev Lett; 2016 Mar; 116(10):108104. PubMed ID: 27015512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trapping of swimmers in a vortex lattice.
    Berman SA; Mitchell KA
    Chaos; 2020 Jun; 30(6):063121. PubMed ID: 32611071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hydrodynamics of swimming at intermediate Reynolds numbers in the water boatman (Corixidae).
    Ngo V; McHenry MJ
    J Exp Biol; 2014 Aug; 217(Pt 15):2740-51. PubMed ID: 24855668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How long do particles spend in vortical regions in turbulent flows?
    Bhatnagar A; Gupta A; Mitra D; Pandit R; Perlekar P
    Phys Rev E; 2016 Nov; 94(5-1):053119. PubMed ID: 27967067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Streamwise vortices destabilize swimming bluegill sunfish (Lepomis macrochirus).
    Maia A; Sheltzer AP; Tytell ED
    J Exp Biol; 2015 Mar; 218(Pt 5):786-92. PubMed ID: 25617456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised clustering and performance prediction of vortex wakes from bio-inspired propulsors.
    Calvet AG; Dave M; Franck JA
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thrust generation during steady swimming and acceleration from rest in anguilliform swimmers.
    Du Clos KT; Dabiri JO; Costello JH; Colin SP; Morgan JR; Fogerson SM; Gemmell BJ
    J Exp Biol; 2019 Nov; 222(Pt 22):. PubMed ID: 31740507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory study on behavioral responses of hybrid sturgeon, Acipenseridae, to wake flows induced by cylindrical bluff bodies.
    Zha W; Zeng Y; Katul G; Li Q; Liu X; Chen X
    Sci Total Environ; 2021 Dec; 799():149403. PubMed ID: 34364287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy particle concentration in turbulence at dissipative and inertial scales.
    Bec J; Biferale L; Cencini M; Lanotte A; Musacchio S; Toschi F
    Phys Rev Lett; 2007 Feb; 98(8):084502. PubMed ID: 17359102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of particle-fluid density ratio on the dynamics of finite-size particles in homogeneous isotropic turbulent flows.
    Shen J; Lu Z; Wang LP; Peng C
    Phys Rev E; 2021 Aug; 104(2-2):025109. PubMed ID: 34525650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic clustering of two finite-length flagellated swimmers in viscoelastic fluids.
    Mo C; Fedosov DA
    J R Soc Interface; 2023 Feb; 20(199):20220667. PubMed ID: 36751932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scale dependence of multiplier distributions for particle concentration, enstrophy, and dissipation in the inertial range of homogeneous turbulence.
    Hartlep T; Cuzzi JN; Weston B
    Phys Rev E; 2017 Mar; 95(3-1):033115. PubMed ID: 28415324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-fluid approach for direct numerical simulation of particle-laden turbulent flows at small Stokes numbers.
    Shotorban B; Balachandar S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056703. PubMed ID: 19518589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.
    Rouboa A; Silva A; Leal L; Rocha J; Alves F
    J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clustering of vertically constrained passive particles in homogeneous isotropic turbulence.
    De Pietro M; van Hinsberg MA; Biferale L; Clercx HJ; Perlekar P; Toschi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053002. PubMed ID: 26066244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.