BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35390284)

  • 1. Epigenetic switch controls social actions.
    Pedini G; Bagni C
    Neuron; 2022 Apr; 110(7):1085-1087. PubMed ID: 35390284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ASH1L haploinsufficiency results in autistic-like phenotypes in mice and links Eph receptor gene to autism spectrum disorder.
    Yan Y; Tian M; Li M; Zhou G; Chen Q; Xu M; Hu Y; Luo W; Guo X; Zhang C; Xie H; Wu QF; Xiong W; Liu S; Guan JS
    Neuron; 2022 Apr; 110(7):1156-1172.e9. PubMed ID: 35081333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deficiency of autism risk factor ASH1L in prefrontal cortex induces epigenetic aberrations and seizures.
    Qin L; Williams JB; Tan T; Liu T; Cao Q; Ma K; Yan Z
    Nat Commun; 2021 Nov; 12(1):6589. PubMed ID: 34782621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of histone methyltransferase ASH1L in the developing mouse brain causes autistic-like behaviors.
    Gao Y; Duque-Wilckens N; Aljazi MB; Wu Y; Moeser AJ; Mias GI; Robison AJ; He J
    Commun Biol; 2021 Jun; 4(1):756. PubMed ID: 34145365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Epigenetics' implication in autism spectrum disorders: A review].
    Hamza M; Halayem S; Mrad R; Bourgou S; Charfi F; Belhadj A
    Encephale; 2017 Aug; 43(4):374-381. PubMed ID: 27692350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The diagnostic potential of the epigenome in autism spectrum disorders.
    Coppedè F
    Epigenomics; 2021 Oct; 13(20):1587-1590. PubMed ID: 34617447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity.
    Masini E; Loi E; Vega-Benedetti AF; Carta M; Doneddu G; Fadda R; Zavattari P
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33167418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic clock analysis and increased plasminogen activator inhibitor-1 in high-functioning autism spectrum disorder.
    Okazaki S; Kimura R; Otsuka I; Funabiki Y; Murai T; Hishimoto A
    PLoS One; 2022; 17(2):e0263478. PubMed ID: 35113965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Future Prospects for Epigenetics in Autism Spectrum Disorder.
    Williams LA; LaSalle JM
    Mol Diagn Ther; 2022 Nov; 26(6):569-579. PubMed ID: 35962910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder.
    Grayson DR; Guidotti A
    Epigenomics; 2016 Jan; 8(1):85-104. PubMed ID: 26551091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders.
    Wurzman R; Forcelli PA; Griffey CJ; Kromer LF
    Behav Brain Res; 2015 Feb; 278():115-28. PubMed ID: 25281279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locus-specific DNA methylation of Mecp2 promoter leads to autism-like phenotypes in mice.
    Lu Z; Liu Z; Mao W; Wang X; Zheng X; Chen S; Cao B; Huang S; Zhang X; Zhou T; Zhang Y; Huang X; Sun Q; Li JD
    Cell Death Dis; 2020 Feb; 11(2):85. PubMed ID: 32015323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberrant cognitive phenotypes and altered hippocampal BDNF expression related to epigenetic modifications in mice lacking the post-synaptic scaffolding protein SHANK1: Implications for autism spectrum disorder.
    Sungur AÖ; Jochner MCE; Harb H; Kılıç A; Garn H; Schwarting RKW; Wöhr M
    Hippocampus; 2017 Aug; 27(8):906-919. PubMed ID: 28500650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated genome-wide Alu methylation and transcriptome profiling analyses reveal novel epigenetic regulatory networks associated with autism spectrum disorder.
    Saeliw T; Tangsuwansri C; Thongkorn S; Chonchaiya W; Suphapeetiporn K; Mutirangura A; Tencomnao T; Hu VW; Sarachana T
    Mol Autism; 2018; 9():27. PubMed ID: 29686828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autism spectrum disorder model mice: Focus on copy number variation and epigenetics.
    Nakai N; Otsuka S; Myung J; Takumi T
    Sci China Life Sci; 2015 Oct; 58(10):976-84. PubMed ID: 26335737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epigenetic, and Environmental Factors.
    Bhandari R; Paliwal JK; Kuhad A
    Adv Neurobiol; 2020; 24():97-141. PubMed ID: 32006358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The considerations for diagnosis of autism spectrum disorders and its pathogenic mechanisms].
    Kato H; Ozaki N
    Rinsho Shinkeigaku; 2019 Jan; 59(1):13-20. PubMed ID: 30606997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA Methylation and Susceptibility to Autism Spectrum Disorder.
    Tremblay MW; Jiang YH
    Annu Rev Med; 2019 Jan; 70():151-166. PubMed ID: 30691368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autism-associated Shank3 mutations alter mGluR expression and mGluR-dependent but not NMDA receptor-dependent long-term depression.
    Lee K; Vyas Y; Garner CC; Montgomery JM
    Synapse; 2019 Aug; 73(8):e22097. PubMed ID: 30868621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-tissue integration of genetic and epigenetic data offers insight into autism spectrum disorder.
    Andrews SV; Ellis SE; Bakulski KM; Sheppard B; Croen LA; Hertz-Picciotto I; Newschaffer CJ; Feinberg AP; Arking DE; Ladd-Acosta C; Fallin MD
    Nat Commun; 2017 Oct; 8(1):1011. PubMed ID: 29066808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.