These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35390505)

  • 1. Daily temperature fluctuations can magnify the toxicity of pesticides.
    Verheyen J; Delnat V; Theys C
    Curr Opin Insect Sci; 2022 Jun; 51():100919. PubMed ID: 35390505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current and future daily temperature fluctuations make a pesticide more toxic: Contrasting effects on life history and physiology.
    Verheyen J; Stoks R
    Environ Pollut; 2019 May; 248():209-218. PubMed ID: 30798022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased Daily Temperature Fluctuations Overrule the Ability of Gradual Thermal Evolution to Offset the Increased Pesticide Toxicity under Global Warming.
    Verheyen J; Delnat V; Stoks R
    Environ Sci Technol; 2019 Apr; 53(8):4600-4608. PubMed ID: 30921514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shrinking Body Size and Physiology Contribute to Geographic Variation and the Higher Toxicity of Pesticides in a Warming World.
    Verheyen J; Stoks R
    Environ Sci Technol; 2019 Oct; 53(19):11515-11523. PubMed ID: 31498598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative bioenergetic responses to pesticides in damselfly larvae are more likely when it is hotter and when temperatures fluctuate.
    Verheyen J; Stoks R
    Chemosphere; 2020 Mar; 243():125369. PubMed ID: 31765902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Higher mean and fluctuating temperatures jointly determine the impact of the pesticide chlorpyrifos on the growth rate and leaf consumption of a freshwater isopod.
    Theys C; Verheyen J; Tüzün N; Stoks R
    Chemosphere; 2021 Jun; 273():128528. PubMed ID: 33092821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adverse effects of the pesticide chlorpyrifos on the physiology of a damselfly only occur at the cold and hot extremes of a temperature gradient.
    Verheyen J; Cuypers K; Stoks R
    Environ Pollut; 2023 Jun; 326():121438. PubMed ID: 36963457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature variation makes an ectotherm more sensitive to global warming unless thermal evolution occurs.
    Verheyen J; Stoks R
    J Anim Ecol; 2019 Apr; 88(4):624-636. PubMed ID: 30637722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy.
    Op de Beeck L; Verheyen J; Stoks R
    Environ Pollut; 2018 Feb; 233():226-234. PubMed ID: 29096295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating both interaction pathways between warming and pesticide exposure on upper thermal tolerance in high- and low-latitude populations of an aquatic insect.
    Op de Beeck L; Verheyen J; Stoks R
    Environ Pollut; 2017 May; 224():714-721. PubMed ID: 28040340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mosquito larvae that survive a heat spike are less sensitive to subsequent exposure to the pesticide chlorpyrifos.
    Meng S; Delnat V; Stoks R
    Environ Pollut; 2020 Oct; 265(Pt A):114824. PubMed ID: 32454381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong differences between two congeneric species in sensitivity to pesticides in a warming world.
    de Beeck LO; Verheyen J; Stoks R
    Sci Total Environ; 2018 Mar; 618():60-69. PubMed ID: 29126027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Daily temperature variation lowers the lethal and sublethal impact of a pesticide pulse due to a higher degradation rate.
    Delnat V; Verborgt J; Janssens L; Stoks R
    Chemosphere; 2021 Jan; 263():128114. PubMed ID: 33297107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whether warming magnifies the toxicity of a pesticide is strongly dependent on the concentration and the null model.
    Delnat V; Janssens L; Stoks R
    Aquat Toxicol; 2019 Jun; 211():38-45. PubMed ID: 30921756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extreme temperatures in the adult stage shape delayed effects of larval pesticide stress: a comparison between latitudes.
    Janssens L; Dinh Van K; Stoks R
    Aquat Toxicol; 2014 Mar; 148():74-82. PubMed ID: 24463491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transgenerational exposure to warming reduces the sensitivity to a pesticide under warming.
    Meng S; Tran TT; Delnat V; Stoks R
    Environ Pollut; 2021 Sep; 284():117217. PubMed ID: 33915393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A widespread morphological antipredator mechanism reduces the sensitivity to pesticides and increases the susceptibility to warming.
    Janssens L; Verberk W; Stoks R
    Sci Total Environ; 2018 Jun; 626():1230-1235. PubMed ID: 29898530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Performance Curves in a Polluted World: Too Cold and Too Hot Temperatures Synergistically Increase Pesticide Toxicity.
    Verheyen J; Stoks R
    Environ Sci Technol; 2023 Feb; 57(8):3270-3279. PubMed ID: 36787409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The costs of living in a thermal fluctuating environment for the tropical haematophagous bug, Rhodnius prolixus.
    Rolandi C; Schilman PE
    J Therm Biol; 2018 May; 74():92-99. PubMed ID: 29801656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive bioenergetic responses to a pesticide and predation risk in an aquatic insect.
    Van Dievel M; Janssens L; Stoks R
    Aquat Toxicol; 2019 Jul; 212():205-213. PubMed ID: 31132738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.