These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35390505)

  • 21. The effect of warming on pesticide toxicity is reversed between developmental stages in the mosquito Culex pipiens.
    Tran TT; Dinh Van K; Janssens L; Stoks R
    Sci Total Environ; 2020 May; 717():134811. PubMed ID: 31836210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acute warming increases pesticide toxicity more than transgenerational warming by reducing the energy budget.
    Meng S; Tran TT; Van Dinh K; Delnat V; Stoks R
    Sci Total Environ; 2022 Jan; 805():150373. PubMed ID: 34818764
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Warming increases chlorpyrifos effects on predator but not anti-predator behaviours.
    Dinh Van K; Janssens L; Debecker S; Stoks R
    Aquat Toxicol; 2014 Jul; 152():215-21. PubMed ID: 24792152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combined effects of larval exposure to a heat wave and chlorpyrifos in northern and southern populations of the damselfly Ischnura elegans.
    Arambourou H; Stoks R
    Chemosphere; 2015 Jun; 128():148-54. PubMed ID: 25698293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Warmer winters modulate life history and energy storage but do not affect sensitivity to a widespread pesticide in an aquatic insect.
    Arambourou H; Stoks R
    Aquat Toxicol; 2015 Oct; 167():38-45. PubMed ID: 26261878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multigenerational effects modify the tolerance of mosquito larvae to chlorpyrifos but not to a heat spike and do not change their synergism.
    Meng S; Delnat V; Stoks R
    Environ Pollut; 2022 Jan; 292(Pt A):118333. PubMed ID: 34637829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chlorpyrifos-induced oxidative damage is reduced under warming and predation risk: Explaining antagonistic interactions with a pesticide.
    Janssens L; Stoks R
    Environ Pollut; 2017 Jul; 226():79-88. PubMed ID: 28411497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exposure to a heat wave under food limitation makes an agricultural insecticide lethal: a mechanistic laboratory experiment.
    Dinh KV; Janssens L; Stoks R
    Glob Chang Biol; 2016 Oct; 22(10):3361-72. PubMed ID: 27390895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The pace-of life explains whether gills improve or exacerbate pesticide sensitivity in a damselfly larva.
    Janssens L; Verberk W; Stoks R
    Environ Pollut; 2021 Aug; 282():117019. PubMed ID: 33823312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Exposure Order Strongly Modifies How a Heat Spike Increases Pesticide Toxicity.
    Meng S; Delnat V; Stoks R
    Environ Sci Technol; 2020 Sep; 54(18):11476-11484. PubMed ID: 32804496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fitness Effects of Chlorpyrifos in the Damselfly Enallagma cyathigerum Strongly Depend upon Temperature and Food Level and Can Bridge Metamorphosis.
    Janssens L; Stoks R
    PLoS One; 2013; 8(6):e68107. PubMed ID: 23840819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Testing the time-scale dependence of delayed interactions: A heat wave during the egg stage shapes how a pesticide interacts with a successive heat wave in the larval stage.
    Janssens L; Tüzün N; Stoks R
    Environ Pollut; 2017 Nov; 230():351-359. PubMed ID: 28668596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stoichiometric Responses to an Agricultural Pesticide Are Modified by Predator Cues.
    Janssens L; Op de Beeck L; Stoks R
    Environ Sci Technol; 2017 Jan; 51(1):581-588. PubMed ID: 27936640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature variation magnifies chlorpyrifos toxicity differently between larval and adult mosquitoes.
    Delnat V; Tran TT; Verheyen J; Van Dinh K; Janssens L; Stoks R
    Sci Total Environ; 2019 Nov; 690():1237-1244. PubMed ID: 31470486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Daily temperature variation magnifies the toxicity of a mixture consisting of a chemical pesticide and a biopesticide in a vector mosquito.
    Delnat V; Tran TT; Janssens L; Stoks R
    Sci Total Environ; 2019 Apr; 659():33-40. PubMed ID: 30594859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Urbanisation shapes behavioural responses to a pesticide.
    Tüzün N; Debecker S; Op de Beeck L; Stoks R
    Aquat Toxicol; 2015 Jun; 163():81-8. PubMed ID: 25863029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating multiple stressors across life stages and latitudes: Combined and delayed effects of an egg heat wave and larval pesticide exposure in a damselfly.
    Sniegula S; Janssens L; Stoks R
    Aquat Toxicol; 2017 May; 186():113-122. PubMed ID: 28282618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sublethal concentrations of chlorpyrifos induce changes in the thermal sensitivity and tolerance of anuran tadpoles in the toad Rhinella arenarum?
    Quiroga LB; Sanabria EA; Fornés MW; Bustos DA; Tejedo M
    Chemosphere; 2019 Mar; 219():671-677. PubMed ID: 30557723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduced stress defence responses contribute to the higher toxicity of a pesticide under warming.
    Delnat V; Swaegers J; Asselman J; Stoks R
    Mol Ecol; 2020 Dec; 29(23):4735-4748. PubMed ID: 33006234
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An adaptive transgenerational effect of warming but not of pesticide exposure determines how a pesticide and warming interact for antipredator behaviour.
    Tran TT; Janssens L; Dinh KV; Stoks R
    Environ Pollut; 2019 Feb; 245():307-315. PubMed ID: 30447473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.