These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35390615)

  • 1. Drying and rewetting induce changes in biofilm characteristics and the subsequent release of metal ions.
    Luo X; Yang Y; Xie S; Wang W; Li N; Wen C; Zhu S; Chen L
    J Hazard Mater; 2022 Jul; 433():128832. PubMed ID: 35390615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Drying-Rewetting cycles on the metal adsorption and tolerance of natural biofilms.
    Xie S; Wang W; Li N; Wen C; Zhu S; Luo X
    J Environ Manage; 2023 Feb; 327():116922. PubMed ID: 36462490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistance and resilience of benthic biofilm communities from a temperate saltmarsh to desiccation and rewetting.
    McKew BA; Taylor JD; McGenity TJ; Underwood GJ
    ISME J; 2011 Jan; 5(1):30-41. PubMed ID: 20596071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate and edaphic factors drive soil enzyme activity dynamics and tolerance to Cd toxicity after rewetting of dry soil.
    Tan X; He J; Nie Y; Ni X; Ye Q; Ma L; Megharaj M; He W; Shen W
    Sci Total Environ; 2023 Jan; 855():158926. PubMed ID: 36152848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of organic amendment on soil aggregation and microbial community composition during drying-rewetting alternation.
    Sun D; Li K; Bi Q; Zhu J; Zhang Q; Jin C; Lu L; Lin X
    Sci Total Environ; 2017 Jan; 574():735-743. PubMed ID: 27664760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms.
    Harrison JJ; Ceri H; Yerly J; Rabiei M; Hu Y; Martinuzzi R; Turner RJ
    Appl Environ Microbiol; 2007 Aug; 73(15):4940-9. PubMed ID: 17557844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of drying-rewetting frequency on soil bacterial community structure.
    Fierer N; Schimel JP; Holden PA
    Microb Ecol; 2003 Jan; 45(1):63-71. PubMed ID: 12469245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Damage of heavy metals to Vallisneria natans (V. natans) and characterization of microbial community in biofilm.
    Huang S; Song Q; Li Q; Zhang H; Luo X; Zheng Z
    Aquat Toxicol; 2020 Aug; 225():105515. PubMed ID: 32516672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drying-rewetting cycles affect fungal and bacterial growth differently in an arable soil.
    Bapiri A; Bååth E; Rousk J
    Microb Ecol; 2010 Aug; 60(2):419-28. PubMed ID: 20635180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the Desiccation Duration on the Dynamic Responses of Biofilm Metabolic Activities to Rewetting.
    Miao L; Li C; Adyel TM; Huang W; Wu J; Yu Y; Hou J
    Environ Sci Technol; 2023 Jan; 57(4):1828-1836. PubMed ID: 36637413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial Biofilms for Environmental Bioremediation of Heavy Metals: a Review.
    Syed Z; Sogani M; Rajvanshi J; Sonu K
    Appl Biochem Biotechnol; 2023 Sep; 195(9):5693-5711. PubMed ID: 36576654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and transformations of cadmium in water-biofilm-sediment phases as affected by hydrodynamic conditions.
    Zhu S; Zhang Z; Wen C; Zhu S; Li C; Xu H; Luo X
    J Environ Manage; 2024 Mar; 354():120368. PubMed ID: 38394874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid remodeling of the soil lipidome in response to a drying-rewetting event.
    Couvillion SP; Danczak RE; Naylor D; Smith ML; Stratton KG; Paurus VL; Bloodsworth KJ; Farris Y; Schmidt DJ; Richardson RE; Bramer LM; Fansler SJ; Nakayasu ES; McDermott JE; Metz TO; Lipton MS; Jansson JK; Hofmockel KS
    Microbiome; 2023 Feb; 11(1):34. PubMed ID: 36849975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absence of oxygen effect on microbial structure and methane production during drying and rewetting events.
    Liu T; Li X; Yekta SS; Björn A; Mu BZ; Masuda LSM; Schnürer A; Enrich-Prast A
    Sci Rep; 2022 Oct; 12(1):16570. PubMed ID: 36195651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of a biofilm bioreactor on water quality and microbial communities in a hypereutrophic urban river.
    Cai X; Yao L; Sheng Q; Jiang L; Wang T; Dahlgren RA; Deng H
    Environ Technol; 2021 Apr; 42(9):1452-1460. PubMed ID: 31539312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental influences on the partitioning and diffusion of hydrophobic organic contaminants in microbial biofilms.
    Wicke D; Böckelmann U; Reemtsma T
    Environ Sci Technol; 2008 Mar; 42(6):1990-6. PubMed ID: 18409626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultivation substrata differentiate the properties of river biofilm EPS and their binding of heavy metals: A spectroscopic insight.
    Wang L; Chen W; Song X; Li Y; Zhang W; Zhang H; Niu L
    Environ Res; 2020 Mar; 182():109052. PubMed ID: 31874422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal tolerance in marine strains of Yarrowia lipolytica.
    Bankar A; Zinjarde S; Shinde M; Gopalghare G; Ravikumar A
    Extremophiles; 2018 Jul; 22(4):617-628. PubMed ID: 29594464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative responses of river biofilms at the community level to common organic solvent and herbicide exposure.
    Paule A; Roubeix V; Swerhone GD; Roy J; Lauga B; Duran R; Delmas F; Paul E; Rols JL; Lawrence JR
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4282-93. PubMed ID: 26315586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soil microbial legacies differ following drying-rewetting and freezing-thawing cycles.
    Meisner A; Snoek BL; Nesme J; Dent E; Jacquiod S; Classen AT; Priemé A
    ISME J; 2021 Apr; 15(4):1207-1221. PubMed ID: 33408369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.