These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 35390629)
1. Shifts in benthic bacterial communities associated with farming stages and a microbiological proxy for assessing sulfidic sediment conditions at fish farms. Choi A; Lee TK; Cho H; Lee WC; Hyun JH Mar Pollut Bull; 2022 May; 178():113603. PubMed ID: 35390629 [TBL] [Abstract][Full Text] [Related]
2. Microbially-driven sulfur cycling microbial communities in different mangrove sediments. Li M; Fang A; Yu X; Zhang K; He Z; Wang C; Peng Y; Xiao F; Yang T; Zhang W; Zheng X; Zhong Q; Liu X; Yan Q Chemosphere; 2021 Jun; 273():128597. PubMed ID: 33077194 [TBL] [Abstract][Full Text] [Related]
3. Fish growth enhances microbial sulfur cycling in aquaculture pond sediments. Zhang K; Zheng X; He Z; Yang T; Shu L; Xiao F; Wu Y; Wang B; Li Z; Chen P; Yan Q Microb Biotechnol; 2020 Sep; 13(5):1597-1610. PubMed ID: 32940416 [TBL] [Abstract][Full Text] [Related]
4. Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Grigoryan AA; Cornish SL; Buziak B; Lin S; Cavallaro A; Arensdorf JJ; Voordouw G Appl Environ Microbiol; 2008 Jul; 74(14):4324-35. PubMed ID: 18502934 [TBL] [Abstract][Full Text] [Related]
5. Composition and key-influencing factors of bacterial communities active in sulfur cycling of soda lake sediments. Li X; Yang M; Mu T; Miao D; Liu J; Xing J Arch Microbiol; 2022 May; 204(6):317. PubMed ID: 35567694 [TBL] [Abstract][Full Text] [Related]
6. Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in oil reservoir and biological control of SRB: a review. Gao P; Fan K Arch Microbiol; 2023 Apr; 205(5):162. PubMed ID: 37010699 [TBL] [Abstract][Full Text] [Related]
7. Microbial transformations by sulfur bacteria can recover value from phosphogypsum: A global problem and a possible solution. Bounaga A; Alsanea A; Lyamlouli K; Zhou C; Zeroual Y; Boulif R; Rittmann BE Biotechnol Adv; 2022; 57():107949. PubMed ID: 35337932 [TBL] [Abstract][Full Text] [Related]
8. Comparison of sulphate-reducing bacterial communities in Japanese fish farm sediments with different levels of organic enrichment. Kondo R; Mori Y; Sakami T Microbes Environ; 2012; 27(2):193-9. PubMed ID: 22791053 [TBL] [Abstract][Full Text] [Related]
9. Succession of sulfur bacteria during decomposition of cyanobacterial bloom biomass in the shallow Lake Nanhu: An ex situ mesocosm study. Chen M; Jiao YY; Zhang YQ; Krumholz LR; Ren JX; Li ZH; Zhao LY; Song HT; Lu JD Chemosphere; 2020 Oct; 256():127101. PubMed ID: 32450355 [TBL] [Abstract][Full Text] [Related]
10. Transformation of sulfur in the sediment-water system of the sewage pipeline under different hydraulic retention time. Liu C; Wei H; Liu Q; Tao Y; Xie Y; Zhou C Environ Pollut; 2023 Nov; 337():122596. PubMed ID: 37748641 [TBL] [Abstract][Full Text] [Related]
11. Microbial Diversity and Community Structure of Sulfate-Reducing and Sulfur-Oxidizing Bacteria in Sediment Cores from the East China Sea. Zhang Y; Wang X; Zhen Y; Mi T; He H; Yu Z Front Microbiol; 2017; 8():2133. PubMed ID: 29163420 [TBL] [Abstract][Full Text] [Related]
12. Diversity and activity of sulphur-oxidizing bacteria and sulphate-reducing bacteria in landfill cover soils. Xia FF; Su Y; Wei XM; He YH; Wu ZC; Ghulam A; He R Lett Appl Microbiol; 2014 Jul; 59(1):26-34. PubMed ID: 24576086 [TBL] [Abstract][Full Text] [Related]
13. Compositions and Abundances of Sulfate-Reducing and Sulfur-Oxidizing Microorganisms in Water-Flooded Petroleum Reservoirs with Different Temperatures in China. Tian H; Gao P; Chen Z; Li Y; Li Y; Wang Y; Zhou J; Li G; Ma T Front Microbiol; 2017; 8():143. PubMed ID: 28210252 [TBL] [Abstract][Full Text] [Related]
14. The use of magnesium peroxide for the inhibition of sulfate-reducing bacteria under anoxic conditions. Chang YJ; Chang YT; Hung CH J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1481-91. PubMed ID: 18712535 [TBL] [Abstract][Full Text] [Related]
15. Impact of finfish aquaculture on biogeochemical processes in coastal ecosystems and elemental sulfur as a relevant proxy for assessing farming condition. Choi A; Kim B; Mok JS; Yoo J; Kim JB; Lee WC; Hyun JH Mar Pollut Bull; 2020 Jan; 150():110635. PubMed ID: 31910514 [TBL] [Abstract][Full Text] [Related]
16. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related]
17. Identification of sulfur-oxidizing bacteria from fishponds and their performance to remove hydrogen sulfide under aquarium conditions. Dashtbin R; Mahmoudi N; Besharati H; Lalevic B Braz J Microbiol; 2023 Dec; 54(4):3163-3172. PubMed ID: 37819610 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the bacterial community in the sediment of a brackish lake with oyster aquaculture. Santander-De Leon SM; Okunishi S; Kihira M; Nakano M; Nuñal SN; Hidaka M; Yoshikawa T; Maeda H Biocontrol Sci; 2013; 18(1):29-40. PubMed ID: 23538849 [TBL] [Abstract][Full Text] [Related]
19. Microbial interactions regulated by the dosage of ferroferric oxide in the co-metabolism of organic carbon and sulfate. Xing L; Zhang W; Gu M; Yin Q; Wu G Bioresour Technol; 2020 Jan; 296():122317. PubMed ID: 31677401 [TBL] [Abstract][Full Text] [Related]
20. Enhanced elementary sulfur recovery in integrated sulfate-reducing, sulfur-producing rector under micro-aerobic condition. Xu XJ; Chen C; Wang AJ; Fang N; Yuan Y; Ren NQ; Lee DJ Bioresour Technol; 2012 Jul; 116():517-21. PubMed ID: 22591695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]