These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35390648)

  • 21. Relationship between short-range stiffness and yielding in type-identified, chemically skinned muscle fibers from the cat triceps surae muscles.
    Malamud JG; Godt RE; Nichols TR
    J Neurophysiol; 1996 Oct; 76(4):2280-9. PubMed ID: 8899603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Residual Force Enhancement Is Attenuated in a Shortening Magnitude-dependent Manner.
    Fukutani A; Herzog W
    Med Sci Sports Exerc; 2018 Oct; 50(10):2007-2014. PubMed ID: 29771823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The stretch-shortening cycle effect is prominent in the inhibited force state.
    Fukutani A; Herzog W
    J Biomech; 2021 Jan; 115():110136. PubMed ID: 33248703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Residual force enhancement exceeds the isometric force at optimal sarcomere length for optimized stretch conditions.
    Lee EJ; Herzog W
    J Appl Physiol (1985); 2008 Aug; 105(2):457-62. PubMed ID: 18499781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Force enhancement following stretching of skeletal muscle: a new mechanism.
    Herzog W; Leonard TR
    J Exp Biol; 2002 May; 205(Pt 9):1275-83. PubMed ID: 11948204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Force produced by isolated sarcomeres and half-sarcomeres after an imposed stretch.
    Rassier DE; Pavlov I
    Am J Physiol Cell Physiol; 2012 Jan; 302(1):C240-8. PubMed ID: 21998143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Residual force enhancement in myofibrils and sarcomeres.
    Joumaa V; Leonard TR; Herzog W
    Proc Biol Sci; 2008 Jun; 275(1641):1411-9. PubMed ID: 18348966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Residual force enhancement after lengthening is present during submaximal plantar flexion and dorsiflexion actions in humans.
    Pinniger GJ; Cresswell AG
    J Appl Physiol (1985); 2007 Jan; 102(1):18-25. PubMed ID: 16946022
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium sensitivity of residual force enhancement in rabbit skinned fibers.
    Joumaa V; Herzog W
    Am J Physiol Cell Physiol; 2014 Aug; 307(4):C395-401. PubMed ID: 24965591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding.
    Stehle R; Brenner B
    Biophys J; 2000 Mar; 78(3):1458-73. PubMed ID: 10692331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Considerations on the history dependence of muscle contraction.
    Rassier DE; Herzog W
    J Appl Physiol (1985); 2004 Feb; 96(2):419-27. PubMed ID: 14715673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical properties of skinned rabbit psoas and soleus muscle fibres during lengthening: effects of phosphate and Ca2+.
    Stienen GJ; Versteeg PG; Papp Z; Elzinga G
    J Physiol; 1992; 451():503-23. PubMed ID: 1403822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of active shortening and stretching on the rate of force re-development in rabbit psoas muscle fibres.
    Ames SR; Joumaa V; Herzog W
    J Exp Biol; 2022 Nov; 225(22):. PubMed ID: 36268629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active shortening protects against stretch-induced force deficits in human skeletal muscle.
    Saripalli AL; Sugg KB; Mendias CL; Brooks SV; Claflin DR
    J Appl Physiol (1985); 2017 May; 122(5):1218-1226. PubMed ID: 28235860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fiber-type dependence of stretch-induced force enhancement in rat skeletal muscle.
    Ramsey KA; Bakker AJ; Pinniger GJ
    Muscle Nerve; 2010 Nov; 42(5):769-77. PubMed ID: 20976780
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stretch-induced force enhancement and stability of skeletal muscle myofibrils.
    Rassier DE; Herzog W; Pollack GH
    Adv Exp Med Biol; 2003; 538():501-15; discussion 515. PubMed ID: 15098694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Passive force enhancement is not abolished by shortening of single rabbit psoas fibres.
    Liu S; Baptista de Oliveira Medeiros H; de Brito Fontana H; Herzog W
    J Biomech; 2022 Dec; 145():111386. PubMed ID: 36410203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic behaviour of half-sarcomeres during and after stretch in activated rabbit psoas myofibrils: sarcomere asymmetry but no 'sarcomere popping'.
    Telley IA; Stehle R; Ranatunga KW; Pfitzer G; Stüssi E; Denoth J
    J Physiol; 2006 May; 573(Pt 1):173-85. PubMed ID: 16527855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active force inhibition and stretch-induced force enhancement in frog muscle treated with BDM.
    Rassier DE; Herzog W
    J Appl Physiol (1985); 2004 Oct; 97(4):1395-400. PubMed ID: 15194676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Force enhancement after stretch in mammalian muscle fiber: no evidence of cross-bridge involvement.
    Nocella M; Cecchi G; Bagni MA; Colombini B
    Am J Physiol Cell Physiol; 2014 Dec; 307(12):C1123-9. PubMed ID: 25298425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.