These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 3539109)
1. Investigations on the pyruvate decarboxylase catalysed oxidative decarboxylation of 2-oxoacids by 2.6-dichlorophenolindophenol. Hübner G; Atanassova M; Schellenberger A Biomed Biochim Acta; 1986; 45(7):823-32. PubMed ID: 3539109 [TBL] [Abstract][Full Text] [Related]
2. [Study of the kinetic mechanism of the pyruvate-2,6-dichlorophenolindophenol reductase activity of muscle pyruvate dehydrogenase]. Khaĭlova LS; Bernkhardt R; Khiubner G Biokhimiia; 1977 Jan; 42(1):113-7. PubMed ID: 856300 [TBL] [Abstract][Full Text] [Related]
3. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates. Schütz A; Golbik R; König S; Hübner G; Tittmann K Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904 [TBL] [Abstract][Full Text] [Related]
4. Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida. Siegert P; McLeish MJ; Baumann M; Iding H; Kneen MM; Kenyon GL; Pohl M Protein Eng Des Sel; 2005 Jul; 18(7):345-57. PubMed ID: 15930043 [TBL] [Abstract][Full Text] [Related]
5. Reactions of alternate substrates demonstrate stereoelectronic control of reactivity in dialkylglycine decarboxylase. Sun S; Zabinski RF; Toney MD Biochemistry; 1998 Mar; 37(11):3865-75. PubMed ID: 9521707 [TBL] [Abstract][Full Text] [Related]
6. Pyruvate decarboxylase--potentially inactive in the absence of the substrate. Hübner G; Schellenberger A Biochem Int; 1986 Nov; 13(5):767-72. PubMed ID: 3545209 [TBL] [Abstract][Full Text] [Related]
7. Reactivity at the substrate activation site of yeast pyruvate decarboxylase: inhibition by distortion of domain interactions. Baburina I; Dikdan G; Guo F; Tous GI; Root B; Jordan F Biochemistry; 1998 Feb; 37(5):1245-55. PubMed ID: 9477950 [TBL] [Abstract][Full Text] [Related]
8. Thiamin diphosphate in biological chemistry: exploitation of diverse thiamin diphosphate-dependent enzymes for asymmetric chemoenzymatic synthesis. Müller M; Gocke D; Pohl M FEBS J; 2009 Jun; 276(11):2894-904. PubMed ID: 19490096 [TBL] [Abstract][Full Text] [Related]
9. Cross-linking of pyruvate decarboxylase. Characterization of the native and substrate-activated enzyme states. König S; Hübner G; Schellenberger A Biomed Biochim Acta; 1990; 49(6):465-71. PubMed ID: 2275720 [TBL] [Abstract][Full Text] [Related]
10. Is a hydrophobic amino acid required to maintain the reactive V conformation of thiamin at the active center of thiamin diphosphate-requiring enzymes? Experimental and computational studies of isoleucine 415 of yeast pyruvate decarboxylase. Guo F; Zhang D; Kahyaoglu A; Farid RS; Jordan F Biochemistry; 1998 Sep; 37(38):13379-91. PubMed ID: 9748345 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic studies on phosphopantothenoylcysteine decarboxylase: trapping of an enethiolate intermediate with a mechanism-based inactivating agent. Strauss E; Zhai H; Brand LA; McLafferty FW; Begley TP Biochemistry; 2004 Dec; 43(49):15520-33. PubMed ID: 15581364 [TBL] [Abstract][Full Text] [Related]
12. Spectroscopic and electronic structure studies of the role of active site interactions in the decarboxylation reaction of alpha-keto acid-dependent dioxygenases. Neidig ML; Brown CD; Kavana M; Choroba OW; Spencer JB; Moran GR; Solomon EI J Inorg Biochem; 2006 Dec; 100(12):2108-16. PubMed ID: 17070917 [TBL] [Abstract][Full Text] [Related]
13. Irreversible inactivation of pyruvate decarboxylase in the presence of substrate and an oxidant. An example of paracatalytic enzyme inactivation. Cogoli-Greuter M; Hausner U; Christen P Eur J Biochem; 1979 Oct; 100(1):295-300. PubMed ID: 385313 [TBL] [Abstract][Full Text] [Related]
14. Structural and kinetic studies on native intermediates and an intermediate analogue in benzoylformate decarboxylase reveal a least motion mechanism with an unprecedented short-lived predecarboxylation intermediate. Bruning M; Berheide M; Meyer D; Golbik R; Bartunik H; Liese A; Tittmann K Biochemistry; 2009 Apr; 48(15):3258-68. PubMed ID: 19182954 [TBL] [Abstract][Full Text] [Related]
15. Role of Q52 in catalysis of decarboxylation and transamination in dialkylglycine decarboxylase. Fogle EJ; Liu W; Woon ST; Keller JW; Toney MD Biochemistry; 2005 Dec; 44(50):16392-404. PubMed ID: 16342932 [TBL] [Abstract][Full Text] [Related]
16. Carbon isotope effect of the enzymatic decarboxylation of pyruvic acid. O'Leary MH Biochem Biophys Res Commun; 1976 Dec; 73(3):614-8. PubMed ID: 795429 [No Abstract] [Full Text] [Related]
17. Accelerating unimolecular decarboxylation by preassociated acid catalysis in thiamin-derived intermediates: implicating Brønsted acids as carbanion traps in enzymes. Kluger R; Ikeda G; Hu Q; Cao P; Drewry J J Am Chem Soc; 2006 Dec; 128(49):15856-64. PubMed ID: 17147398 [TBL] [Abstract][Full Text] [Related]
18. The functional role of thiol groups of pyruvate decarboxylase from brewer's yeast. Hübner G; König S; Schellenberger A Biomed Biochim Acta; 1988; 47(1):9-18. PubMed ID: 3291865 [TBL] [Abstract][Full Text] [Related]
19. Brewers' yeast pyruvate decarboxylase produces acetoin from acetaldehyde: a novel tool to study the mechanism of steps subsequent to carbon dioxide loss. Chen GC; Jordan F Biochemistry; 1984 Jul; 23(16):3576-82. PubMed ID: 6383467 [TBL] [Abstract][Full Text] [Related]
20. Engineering the substrate binding site of benzoylformate decarboxylase. Yep A; McLeish MJ Biochemistry; 2009 Sep; 48(35):8387-95. PubMed ID: 19621900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]