These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35391650)

  • 1. What Can We Learn from Synaptic Connectivity Maps about Cerebellar Internal Models?
    Spaeth L; Isope P
    Cerebellum; 2023 Jun; 22(3):468-474. PubMed ID: 35391650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.
    Antonietti A; Casellato C; D'Angelo E; Pedrocchi A
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2748-2762. PubMed ID: 27608482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in cerebellar intrinsic neuronal excitability and synaptic plasticity result from eyeblink conditioning.
    Schreurs BG
    Neurobiol Learn Mem; 2019 Dec; 166():107094. PubMed ID: 31542329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of calcium in synaptic plasticity and motor learning in the cerebellar cortex.
    Lamont MG; Weber JT
    Neurosci Biobehav Rev; 2012 Apr; 36(4):1153-62. PubMed ID: 22305995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Associative anticipatory learning and control of the cerebellar cortex based on the spike-timing-dependent plasticity of the parallel fiber-Purkinje cell synapses.
    Fujita M
    Neural Netw; 2022 Mar; 147():10-24. PubMed ID: 34953298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dysmetria and Errors in Predictions: The Role of Internal Forward Model.
    Cabaraux P; Gandini J; Kakei S; Manto M; Mitoma H; Tanaka H
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32962256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Cerebellar Cortex.
    Hull C; Regehr WG
    Annu Rev Neurosci; 2022 Jul; 45():151-175. PubMed ID: 35803588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebellar connectivity maps embody individual adaptive behavior in mice.
    Spaeth L; Bahuguna J; Gagneux T; Dorgans K; Sugihara I; Poulain B; Battaglia D; Isope P
    Nat Commun; 2022 Jan; 13(1):580. PubMed ID: 35102165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuropeptides and Their Roles in the Cerebellum.
    Li ZH; Li B; Zhang XY; Zhu JN
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMDARs in granule cells contribute to parallel fiber-Purkinje cell synaptic plasticity and motor learning.
    Schonewille M; Girasole AE; Rostaing P; Mailhes-Hamon C; Ayon A; Nelson AB; Triller A; Casado M; De Zeeuw CI; Bouvier G
    Proc Natl Acad Sci U S A; 2021 Sep; 118(37):. PubMed ID: 34507990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic excitability plasticity in cerebellar functioning.
    Ohtsuki G; Shishikura M; Ozaki A
    FEBS J; 2020 Nov; 287(21):4557-4593. PubMed ID: 32367676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal Degrees of Synaptic Connectivity.
    Litwin-Kumar A; Harris KD; Axel R; Sompolinsky H; Abbott LF
    Neuron; 2017 Mar; 93(5):1153-1164.e7. PubMed ID: 28215558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulatory Effects of Monoamines and Perineuronal Nets on Output of Cerebellar Purkinje Cells.
    Hirono M; Karube F; Yanagawa Y
    Front Neural Circuits; 2021; 15():661899. PubMed ID: 34194302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-Term Depression of Intrinsic Excitability Accompanied by Synaptic Depression in Cerebellar Purkinje Cells.
    Shim HG; Jang DC; Lee J; Chung G; Lee S; Kim YG; Jeon DE; Kim SJ
    J Neurosci; 2017 Jun; 37(23):5659-5669. PubMed ID: 28495974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mice lacking EFA6C/Psd2, a guanine nucleotide exchange factor for Arf6, exhibit lower Purkinje cell synaptic density but normal cerebellar motor functions.
    Saegusa S; Fukaya M; Kakegawa W; Tanaka M; Katsumata O; Sugawara T; Hara Y; Itakura M; Okubo T; Sato T; Yuzaki M; Sakagami H
    PLoS One; 2019; 14(5):e0216960. PubMed ID: 31095630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-Term Plasticity Combines with Excitation-Inhibition Balance to Expand Cerebellar Purkinje Cell Dynamic Range.
    Grangeray-Vilmint A; Valera AM; Kumar A; Isope P
    J Neurosci; 2018 May; 38(22):5153-5167. PubMed ID: 29720550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2
    Harmon TC; McLean DL; Raman IM
    J Neurosci; 2020 Apr; 40(15):3063-3074. PubMed ID: 32139583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depression and potentiation of the synaptic transmission between a granule cell and a Purkinje cell in rat cerebellar culture.
    Hirano T
    Neurosci Lett; 1990 Nov; 119(2):141-4. PubMed ID: 2177864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The modifiable neuronal network of the cerebellum.
    Ito M
    Jpn J Physiol; 1984; 34(5):781-92. PubMed ID: 6099855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting a theory of cerebellar cortex.
    Yamazaki T; Lennon W
    Neurosci Res; 2019 Nov; 148():1-8. PubMed ID: 30922970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.