BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 3539189)

  • 21. Multistep mechanism of codon recognition by transfer ribonucleic acid.
    Labuda D; Pörschke D
    Biochemistry; 1980 Aug; 19(16):3799-805. PubMed ID: 7407070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. tRNA conformation and magnesium binding. A study of a yeast phenylalanine-specific tRNA by a fluorescent indicator and differential melting curves.
    Römer R; Hach R
    Eur J Biochem; 1975 Jun; 55(1):271-84. PubMed ID: 1100382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of the constant uridine in binding of yeast tRNAPhe anticodon arm to 30S ribosomes.
    Uhlenbeck OC; Lowary PT; Wittenberg WL
    Nucleic Acids Res; 1982 Jun; 10(11):3341-52. PubMed ID: 7048255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A magnesium-induced conformational transition in the loop of a DNA analog of the yeast tRNA(Phe) anticodon is dependent on RNA-like modifications of the bases of the stem.
    Guenther RH; Hardin CC; Sierzputowska-Gracz H; Dao V; Agris PF
    Biochemistry; 1992 Nov; 31(45):11004-11. PubMed ID: 1445838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of codon recognition by transfer RNA studied with oligonucleotides larger than triplets.
    Labuda D; Striker G; Grosjean H; Porschke D
    Nucleic Acids Res; 1985 May; 13(10):3667-83. PubMed ID: 4011439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymatic conversion of guanosine 3' adjacent to the anticodon of yeast tRNAPhe to N1-methylguanosine and the wye nucleoside: dependence on the anticodon sequence.
    Droogmans L; Grosjean H
    EMBO J; 1987 Feb; 6(2):477-83. PubMed ID: 3556165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAAsp, a model for tRNA-mRNA recognition.
    Moras D; Dock AC; Dumas P; Westhof E; Romby P; Ebel JP; Giegé R
    Proc Natl Acad Sci U S A; 1986 Feb; 83(4):932-6. PubMed ID: 3513167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of acyl transfer ribonucleic acid complexes of Escherichia coli phenylalanyl-tRNA synthetase. A conformational change is rate limiting in catalysis.
    Baltzinger M; Holler E
    Biochemistry; 1982 May; 21(10):2460-7. PubMed ID: 7046786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescent tRNA derivatives and ribosome recognition.
    Wintermeyer W; Robertson JM; Zachau HG
    Mol Biol Biochem Biophys; 1980; 32():368-75. PubMed ID: 7003351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-resolution phosphorus nuclear magnetic resonance spectroscopy of transfer ribonucleic acids: multiple conformations in the anticodon loop.
    Gorenstein DG; Goldfield EM
    Biochemistry; 1982 Nov; 21(23):5839-49. PubMed ID: 6185140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnesium cation induced conformational change of yeast tRNAPhe as studied by singlet-singlet energy transfer.
    Nagamatsu K; Miyazawa Y
    J Biochem; 1983 Dec; 94(6):1967-71. PubMed ID: 6368529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Mechanism of codon-anticodon interaction in ribosomes. Interaction of aminoacyl-tRNA with 70S ribosomes in the absence of elongation factor EF-Tu and GTP].
    Kemkhadze KSh; Odintsov VB; Makhno VI; Semenkov IuP; Kirillov SV
    Mol Biol (Mosk); 1981; 15(4):779-89. PubMed ID: 6912382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-range conformational transition in yeast tRNAPhe, induced by the Y-base removal and detected by chloroacetaldehyde modification.
    Krzyzosiak WJ; Ciesiołka J
    Nucleic Acids Res; 1983 Oct; 11(19):6913-21. PubMed ID: 6356038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective binding of amino acid residues to tRNAPhe.
    Bujalowski W; Porschke D
    Nucleic Acids Res; 1984 Oct; 12(19):7549-63. PubMed ID: 6387624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Topological arrangement of two transfer RNAs on the ribosome. Fluorescence energy transfer measurements between A and P site-bound tRNAphe.
    Paulsen H; Robertson JM; Wintermeyer W
    J Mol Biol; 1983 Jun; 167(2):411-26. PubMed ID: 6345795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzymatic 2'-O-methylation of the wobble nucleoside of eukaryotic tRNAPhe: specificity depends on structural elements outside the anticodon loop.
    Droogmans L; Haumont E; de Henau S; Grosjean H
    EMBO J; 1986 May; 5(5):1105-9. PubMed ID: 3522221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction.
    Davanloo P; Sprinzl M; Cramer F
    Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contributions to selective binding of aromatic amino acid residues to tRNA(Phe).
    Bujalowski W; Porschke D
    Biophys Chem; 1988 Jun; 30(2):151-7. PubMed ID: 3416041
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Affinities of tRNA binding sites of ribosomes from Escherichia coli.
    Lill R; Robertson JM; Wintermeyer W
    Biochemistry; 1986 Jun; 25(11):3245-55. PubMed ID: 3524675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA.
    Quigley GJ; Teeter MM; Rich A
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):64-8. PubMed ID: 343112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.