These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 3539189)

  • 41. Modified nucleoside-dependent transition metal binding to DNA analogs of the tRNA anticodon stem/loop domain.
    Lam AT; Guenther R; Agris PF
    Biometals; 1995 Oct; 8(4):290-6. PubMed ID: 7580049
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA.
    Auxilien S; Crain PF; Trewyn RW; Grosjean H
    J Mol Biol; 1996 Oct; 262(4):437-58. PubMed ID: 8893855
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fluorimetric study of yeast tRNAPheCCF in the complex with phenylalanyl-tRNA synthetase. Evidence for a correlation between the structural adaptation of both macromolecules and the appearance of the acylation activity.
    Lefevre JF; Bacha H; Renaud M; Ehrlich R; Gangloff J; Von der Haar F; Remy P
    Eur J Biochem; 1981 Jul; 117(3):439-47. PubMed ID: 7026233
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nuclear magnetic resonance studies on yeast tRNAPhe. II. Assignment of the iminoproton resonances of the anticodon and T stem by means of nuclear Overhauser effect experiments at 500 MHz.
    Heerschap A; Haasnoot CA; Hilbers CW
    Nucleic Acids Res; 1983 Jul; 11(13):4483-99. PubMed ID: 6346268
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Imino proton NMR assignments and ion-binding studies on Escherichia coli tRNA3Gly.
    Hyde EI
    Eur J Biochem; 1986 Feb; 155(1):57-68. PubMed ID: 2419133
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The conformation of the anticodon loop of yeast tRNAPhe in solution and on ribosomes.
    Odom OW; Craig BB; Hardesty BA
    Biopolymers; 1978 Dec; 17(12):2909-31. PubMed ID: 365255
    [No Abstract]   [Full Text] [Related]  

  • 47. Specific interaction of anticodon loop residues with yeast phenylalanyl-tRNA synthetase.
    Bruce AG; Uhlenbeck OC
    Biochemistry; 1982 Aug; 21(17):3921-6. PubMed ID: 6751381
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RNA structure analysis using T2 ribonuclease: detection of pH and metal ion induced conformational changes in yeast tRNAPhe.
    Vary CP; Vournakis JN
    Nucleic Acids Res; 1984 Sep; 12(17):6763-78. PubMed ID: 6207483
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interactions of some naturally occurring cations with phenylalanine and initiator tRNA from yeast as reflected by their thermal stability.
    Heerschap A; Walters JA; Hilbers CW
    Biophys Chem; 1985 Aug; 22(3):205-17. PubMed ID: 3902111
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High resolution phosphorus NMR spectroscopy of transfer ribonucleic acids.
    Gorenstein DG; Goldfield EM
    Mol Cell Biochem; 1982 Jul; 46(2):97-120. PubMed ID: 6180293
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluorescent derivatives of yeast tRNAPhe.
    Wintermeyer W; Zachau HG
    Eur J Biochem; 1979 Aug; 98(2):465-75. PubMed ID: 114393
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stability of the unique anticodon loop conformation of E.coli tRNAfMet.
    Wrede P; Rich A
    Nucleic Acids Res; 1979 Nov; 7(6):1457-67. PubMed ID: 41223
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interaction of elongation factor Tu with the aminoacyl transfer ribonucleic acid dimer Phe-tRNA-Glu-tRNA.
    Yamane T; Miller DL; Hopfield JJ
    Biochemistry; 1981 Jan; 20(2):449-52. PubMed ID: 7008845
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystallographic refinement of yeast aspartic acid transfer RNA.
    Westhof E; Dumas P; Moras D
    J Mol Biol; 1985 Jul; 184(1):119-45. PubMed ID: 3897553
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamics of the RNA hairpin GNRA tetraloop.
    Menger M; Eckstein F; Porschke D
    Biochemistry; 2000 Apr; 39(15):4500-7. PubMed ID: 10757999
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lack of 2'-O-methylation in the tRNA anticodon loop of two phylogenetically distant yeast species activates the general amino acid control pathway.
    Han L; Guy MP; Kon Y; Phizicky EM
    PLoS Genet; 2018 Mar; 14(3):e1007288. PubMed ID: 29596413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Binding of spermine to tRNATyr stabilizes the conformation of the anticodon loop and creates strong binding sites for divalent cations.
    Nöthig-Laslo V; Weygand-Durasević I; Zivković T; Kućan Z
    Eur J Biochem; 1981 Jul; 117(2):263-7. PubMed ID: 6268406
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conformational changes of yeast tRNAphe as monitored by 31P NMR.
    Salemink PJ; Reijerse EJ; Mollevanger LC; Hilbers CW
    Eur J Biochem; 1981 Apr; 115(3):635-41. PubMed ID: 7238525
    [TBL] [Abstract][Full Text] [Related]  

  • 59. tRNA anticodon replacement experiments show that ribosomal frameshifting can be caused by doublet decoding.
    Bruce AG; Atkins JF; Gesteland RF
    Proc Natl Acad Sci U S A; 1986 Jul; 83(14):5062-6. PubMed ID: 2425361
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanism of codon-anticodon interaction in ribosomes. Direct functional evidence that isolated 30S subunits contain two codon-specific binding sites for transfer RNA.
    Kirillov SV; Makhno VI; Semenkov YP
    Nucleic Acids Res; 1980 Jan; 8(1):183-96. PubMed ID: 6986612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.