These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35392036)

  • 1. Biological Breakdown of Sports in Athletics Based on Multimedia Image Acquisition Techniques.
    Sun P; Zhang B; Chen Q; Guo J
    Comput Intell Neurosci; 2022; 2022():3497942. PubMed ID: 35392036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [A multimedia echocardiographic archive].
    Ciulla M; Paliotti R; Magrini F
    Cardiologia; 1998 Feb; 43(2):195-200. PubMed ID: 9557376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable ultrasound imaging using multimedia technologies: a next-generation ultrasound machine.
    Kim Y; Kim JH; Basoglu C; Winter TC
    IEEE Trans Inf Technol Biomed; 1997 Mar; 1(1):19-29. PubMed ID: 11020807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Our solution for fusion of simultaneusly acquired whole body scintigrams and optical images, as usesful tool in clinical practice in patients with differentiated thyroid carcinomas after radioiodine therapy. A useful tool in clinical practice.
    Matovic M; Jankovic M; Barjaktarovic M; Jeremic M
    Hell J Nucl Med; 2017; 20 Suppl():159. PubMed ID: 29324929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature Matching Optimization of Multimedia Remote Sensing Images Based on Multiscale Edge Extraction.
    Wang Y; Dong J; Wang B
    Comput Intell Neurosci; 2022; 2022():1764507. PubMed ID: 35694579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copying and Recreation Methods of Painting Works Relying on Mobile Digital Multimedia Big Data Analysis.
    Xue L; Yang C
    Comput Intell Neurosci; 2022; 2022():7734506. PubMed ID: 35035465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Improved VLSI Design of the ALU Based FIR Filter for Biomedical Image Filtering Application.
    Arulkumar M; Chandrasekaran M
    Curr Med Imaging; 2021; 17(2):276-287. PubMed ID: 32807061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Personalized Information Service System of Smart Library Based on Multimedia Network Technology.
    Wang J
    Comput Intell Neurosci; 2022; 2022():2856574. PubMed ID: 36120699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BioThreads: a novel VLIW-based chip multiprocessor for accelerating biomedical image processing applications.
    Stevens D; Chouliaras V; Azorin-Peris V; Zheng J; Echiadis A; Hu S
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):257-68. PubMed ID: 23853147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An open medical imaging workstation architecture for platform-independent 3-D medical image processing and visualization.
    Cosić D
    IEEE Trans Inf Technol Biomed; 1997 Dec; 1(4):279-83. PubMed ID: 11020831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Computer Web Page Interface Based on BP Neural Network Algorithm and Multimedia.
    Ma Y
    Comput Intell Neurosci; 2022; 2022():6213718. PubMed ID: 35665287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient phase unwrapping architecture for digital holographic microscopy.
    Hwang WJ; Cheng SC; Cheng CJ
    Sensors (Basel); 2011; 11(10):9160-81. PubMed ID: 22163688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for implementing hardware-assisted high-throughput cellular image analysis.
    Tse HT; Meng P; Gossett DR; Irturk A; Kastner R; Di Carlo D
    J Lab Autom; 2011 Dec; 16(6):422-30. PubMed ID: 22093299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-fast digital tomosynthesis reconstruction using general-purpose GPU programming for image-guided radiation therapy.
    Park JC; Park SH; Kim JS; Han Y; Cho MK; Kim HK; Liu Z; Jiang SB; Song B; Song WY
    Technol Cancer Res Treat; 2011 Aug; 10(4):295-306. PubMed ID: 21728386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new fast and fully automated software based algorithm for extracting respiratory signal from raw PET data and its comparison to other methods.
    Kesner AL; Kuntner C
    Med Phys; 2010 Oct; 37(10):5550-9. PubMed ID: 21089790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hardware approach for histological and histopathological digital image stain normalization.
    Şerbănescu MS; Pleşea IE
    Rom J Morphol Embryol; 2015; 56(2 Suppl):735-41. PubMed ID: 26429166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Applications and advantages of a multimedia system for autopsies ].
    Gualco M; Benzi D; Fulcheri E
    Pathologica; 2001 Oct; 93(5):517-30. PubMed ID: 11725353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retracted: Biological Breakdown of Sports in Athletics Based on Multimedia Image Acquisition Techniques.
    Intelligence And Neuroscience C
    Comput Intell Neurosci; 2023; 2023():9821641. PubMed ID: 37538582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An open-source hardware and software system for acquisition and real-time processing of electrophysiology during high field MRI.
    Purdon PL; Millan H; Fuller PL; Bonmassar G
    J Neurosci Methods; 2008 Nov; 175(2):165-86. PubMed ID: 18761038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.