These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 35392222)
1. Response Prediction to Concurrent Chemoradiotherapy in Esophageal Squamous Cell Carcinoma Using Delta-Radiomics Based on Sequential Whole-Tumor ADC Map. An D; Cao Q; Su N; Li W; Li Z; Liu Y; Zhang Y; Li B Front Oncol; 2022; 12():787489. PubMed ID: 35392222 [TBL] [Abstract][Full Text] [Related]
2. Predicting response to CCRT for esophageal squamous carcinoma by a radiomics-clinical SHAP model. Cheng X; Zhang Y; Zhu M; Sun R; Liu L; Li X BMC Med Imaging; 2023 Oct; 23(1):145. PubMed ID: 37779188 [TBL] [Abstract][Full Text] [Related]
4. The diffusion-weighted magnetic resonance imaging (DWI) predicts the early response of esophageal squamous cell carcinoma to concurrent chemoradiotherapy. Wang L; Liu L; Han C; Liu S; Tian H; Li Z; Ren X; Shi G; Wang Q; Wang G Radiother Oncol; 2016 Nov; 121(2):246-251. PubMed ID: 27838148 [TBL] [Abstract][Full Text] [Related]
5. A nomogram based on pretreatment CT radiomics features for predicting complete response to chemoradiotherapy in patients with esophageal squamous cell cancer. Luo HS; Huang SF; Xu HY; Li XY; Wu SX; Wu DH Radiat Oncol; 2020 Oct; 15(1):249. PubMed ID: 33121507 [TBL] [Abstract][Full Text] [Related]
6. Development and validation of a radiomics signature on differentially expressed features of Cao Q; Li Y; Li Z; An D; Li B; Lin Q Radiother Oncol; 2020 May; 146():9-15. PubMed ID: 32065875 [TBL] [Abstract][Full Text] [Related]
7. The MRI radiomics signature can predict the pathologic response to neoadjuvant chemotherapy in locally advanced esophageal squamous cell carcinoma. Lu S; Wang C; Liu Y; Chu F; Jia Z; Zhang H; Wang Z; Lu Y; Wang S; Yang G; Qu J Eur Radiol; 2024 Jan; 34(1):485-494. PubMed ID: 37540319 [TBL] [Abstract][Full Text] [Related]
8. Treatment effect prediction for sarcoma patients treated with preoperative radiotherapy using radiomics features from longitudinal diffusion-weighted MRIs. Gao Y; Kalbasi A; Hsu W; Ruan D; Fu J; Shao J; Cao M; Wang C; Eilber FC; Bernthal N; Bukata S; Dry SM; Nelson SD; Kamrava M; Lewis J; Low DA; Steinberg M; Hu P; Yang Y Phys Med Biol; 2020 Aug; 65(17):175006. PubMed ID: 32554891 [TBL] [Abstract][Full Text] [Related]
9. Development and Validation of a Radiomics Nomogram Model for Predicting Postoperative Recurrence in Patients With Esophageal Squamous Cell Cancer Who Achieved pCR After Neoadjuvant Chemoradiotherapy Followed by Surgery. Qiu Q; Duan J; Deng H; Han Z; Gu J; Yue NJ; Yin Y Front Oncol; 2020; 10():1398. PubMed ID: 32850451 [No Abstract] [Full Text] [Related]
10. MRI-based radiomics for pretreatment prediction of response to concurrent chemoradiotherapy in locally advanced cervical squamous cell cancer. Zhang X; Zhang Q; Chen Y; Wang S; Zhang J; An J; Xie L; Yu X; Zhao X Abdom Radiol (NY); 2023 Jan; 48(1):367-376. PubMed ID: 36222869 [TBL] [Abstract][Full Text] [Related]
11. Radiomics analysis of apparent diffusion coefficient in cervical cancer: A preliminary study on histological grade evaluation. Liu Y; Zhang Y; Cheng R; Liu S; Qu F; Yin X; Wang Q; Xiao B; Ye Z J Magn Reson Imaging; 2019 Jan; 49(1):280-290. PubMed ID: 29761595 [TBL] [Abstract][Full Text] [Related]
12. Computed tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma. Hu Y; Xie C; Yang H; Ho JWK; Wen J; Han L; Lam KO; Wong IYH; Law SYK; Chiu KWH; Vardhanabhuti V; Fu J Radiother Oncol; 2021 Jan; 154():6-13. PubMed ID: 32941954 [TBL] [Abstract][Full Text] [Related]
13. Radiomics and dosiomics for predicting complete response to definitive chemoradiotherapy patients with oesophageal squamous cell cancer using the hybrid institution model. Kawahara D; Murakami Y; Awane S; Emoto Y; Iwashita K; Kubota H; Sasaki R; Nagata Y Eur Radiol; 2024 Feb; 34(2):1200-1209. PubMed ID: 37589902 [TBL] [Abstract][Full Text] [Related]
14. A novel CT-based radiomics model for predicting response and prognosis of chemoradiotherapy in esophageal squamous cell carcinoma. Kasai A; Miyoshi J; Sato Y; Okamoto K; Miyamoto H; Kawanaka T; Tonoiso C; Harada M; Goto M; Yoshida T; Haga A; Takayama T Sci Rep; 2024 Jan; 14(1):2039. PubMed ID: 38263395 [TBL] [Abstract][Full Text] [Related]
15. Delta-radiomics based on CT predicts pathologic complete response in ESCC treated with neoadjuvant immunochemotherapy and surgery. Li K; Li Y; Wang Z; Huang C; Sun S; Liu X; Fan W; Zhang G; Li X Front Oncol; 2023; 13():1131883. PubMed ID: 37251937 [TBL] [Abstract][Full Text] [Related]
16. Discriminating malignant from benign testicular masses using machine-learning based radiomics signature of appearance diffusion coefficient maps: Comparing with conventional mean and minimum ADC values. Fan C; Sun K; Min X; Cai W; Lv W; Ma X; Li Y; Chen C; Zhao P; Qiao J; Lu J; Guo Y; Xia L Eur J Radiol; 2022 Mar; 148():110158. PubMed ID: 35066342 [TBL] [Abstract][Full Text] [Related]
17. Prediction of pathologic responders to neoadjuvant chemoradiotherapy by diffusion-weighted magnetic resonance imaging in locally advanced esophageal squamous cell carcinoma: a prospective study. Li QW; Qiu B; Wang B; Wang DL; Yin SH; Yang H; Liu JL; Fu JH; Liu MZ; Xie CM; Liu H Dis Esophagus; 2018 Feb; 31(2):. PubMed ID: 29036528 [TBL] [Abstract][Full Text] [Related]
18. Prediction of Response to Induction Chemotherapy Plus Concurrent Chemoradiotherapy for Nasopharyngeal Carcinoma Based on MRI Radiomics and Delta Radiomics: A Two-Center Retrospective Study. Xi Y; Ge X; Ji H; Wang L; Duan S; Chen H; Wang M; Hu H; Jiang F; Ding Z Front Oncol; 2022; 12():824509. PubMed ID: 35530350 [TBL] [Abstract][Full Text] [Related]
19. MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wan L; Peng W; Zou S; Ye F; Geng Y; Ouyang H; Zhao X; Zhang H Acad Radiol; 2021 Nov; 28 Suppl 1():S95-S104. PubMed ID: 33189550 [TBL] [Abstract][Full Text] [Related]
20. Predicting the Local Response of Esophageal Squamous Cell Carcinoma to Neoadjuvant Chemoradiotherapy by Radiomics with a Machine Learning Method Using Murakami Y; Kawahara D; Tani S; Kubo K; Katsuta T; Imano N; Takeuchi Y; Nishibuchi I; Saito A; Nagata Y Diagnostics (Basel); 2021 Jun; 11(6):. PubMed ID: 34200332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]