These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35392282)

  • 1. BOLD Monitoring in the Neural Simulator ANNarchy.
    Maith O; Dinkelbach HÜ; Baladron J; Vitay J; Hamker FH
    Front Neuroinform; 2022; 16():790966. PubMed ID: 35392282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest.
    Archila-Meléndez ME; Sorg C; Preibisch C
    Neuroimage; 2020 Sep; 218():116871. PubMed ID: 32335261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated models of neurovascular coupling and BOLD signals: Responses for varying neural activations.
    Mathias EJ; Kenny A; Plank MJ; David T
    Neuroimage; 2018 Jul; 174():69-86. PubMed ID: 29526745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A frequency-domain machine learning method for dual-calibrated fMRI mapping of oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen consumption (CMRO
    Germuska M; Chandler H; Okell T; Fasano F; Tomassini V; Murphy K; Wise R
    Front Artif Intell; 2020 Mar; 3():. PubMed ID: 32885165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arterial impulse model for the BOLD response to brief neural activation.
    Kim JH; Ress D
    Neuroimage; 2016 Jan; 124(Pt A):394-408. PubMed ID: 26363350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of CMRO
    Zhang Y; Yin Y; Li H; Gao JH
    J Cereb Blood Flow Metab; 2020 Oct; 40(10):2066-2080. PubMed ID: 31665954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability of the coupling of blood flow and oxygen metabolism responses in the brain: a problem for interpreting BOLD studies but potentially a new window on the underlying neural activity.
    Buxton RB; Griffeth VE; Simon AB; Moradi F; Shmuel A
    Front Neurosci; 2014; 8():139. PubMed ID: 24966808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Functional MRI Approach for Investigating Modulations of Brain Oxygen Metabolism.
    Griffeth VE; Blockley NP; Simon AB; Buxton RB
    PLoS One; 2013; 8(6):e68122. PubMed ID: 23826367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ANNarchy: a code generation approach to neural simulations on parallel hardware.
    Vitay J; Dinkelbach HÜ; Hamker FH
    Front Neuroinform; 2015; 9():19. PubMed ID: 26283957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation.
    Kim SG; Rostrup E; Larsson HB; Ogawa S; Paulson OB
    Magn Reson Med; 1999 Jun; 41(6):1152-61. PubMed ID: 10371447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional MRI during hyperbaric oxygen: Effects of oxygen on neurovascular coupling and BOLD fMRI signals.
    Cardenas DP; Muir ER; Huang S; Boley A; Lodge D; Duong TQ
    Neuroimage; 2015 Oct; 119():382-9. PubMed ID: 26143203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the dynamic relationship between cerebral blood flow and the BOLD signal: Implications for quantitative functional MRI.
    Simon AB; Buxton RB
    Neuroimage; 2015 Aug; 116():158-67. PubMed ID: 25862267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal activation induced BOLD and CBF responses upon acetazolamide administration in patients with steno-occlusive artery disease.
    Siero JC; Hartkamp NS; Donahue MJ; Harteveld AA; Compter A; Petersen ET; Hendrikse J
    Neuroimage; 2015 Jan; 105():276-85. PubMed ID: 25261002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of capillary transit time heterogeneity on the BOLD signal.
    Angleys H; Jespersen SN; Østergaard L
    Hum Brain Mapp; 2018 Jun; 39(6):2329-2352. PubMed ID: 29498762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring neural activity from BOLD signals through nonlinear optimization.
    Vakorin VA; Krakovska OO; Borowsky R; Sarty GE
    Neuroimage; 2007 Nov; 38(2):248-60. PubMed ID: 17825582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CBF/CMRO2 coupling measured with calibrated BOLD fMRI: sources of bias.
    Leontiev O; Dubowitz DJ; Buxton RB
    Neuroimage; 2007 Jul; 36(4):1110-22. PubMed ID: 17524665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the default-mode network by quantitative
    Aoe J; Watabe T; Shimosegawa E; Kato H; Kanai Y; Naka S; Matsunaga K; Isohashi K; Tatsumi M; Hatazawa J
    Ann Nucl Med; 2018 Aug; 32(7):485-491. PubMed ID: 29934675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood oxygenation level-dependent (BOLD)-based techniques for the quantification of brain hemodynamic and metabolic properties - theoretical models and experimental approaches.
    Yablonskiy DA; Sukstanskii AL; He X
    NMR Biomed; 2013 Aug; 26(8):963-86. PubMed ID: 22927123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principal neuron spiking: neither necessary nor sufficient for cerebral blood flow in rat cerebellum.
    Thomsen K; Offenhauser N; Lauritzen M
    J Physiol; 2004 Oct; 560(Pt 1):181-9. PubMed ID: 15272036
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.