These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 35392508)
1. Quantitative Transcriptomic and Proteomic Analysis of Fruit Development and Ripening in Watermelon ( Yu Y; Guo S; Ren Y; Zhang J; Li M; Tian S; Wang J; Sun H; Zuo Y; Chen Y; Gong G; Zhang H; Xu Y Front Plant Sci; 2022; 13():818392. PubMed ID: 35392508 [TBL] [Abstract][Full Text] [Related]
2. Comprehensive Profiling of Alternative Splicing and Alternative Polyadenylation during Fruit Ripening in Watermelon ( Yu Y; Liufu Y; Ren Y; Zhang J; Li M; Tian S; Wang J; Liao S; Gong G; Zhang H; Guo S Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37895011 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening. Zhu Q; Gao P; Liu S; Zhu Z; Amanullah S; Davis AR; Luan F BMC Genomics; 2017 Jan; 18(1):3. PubMed ID: 28049426 [TBL] [Abstract][Full Text] [Related]
4. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. Guo S; Liu J; Zheng Y; Huang M; Zhang H; Gong G; He H; Ren Y; Zhong S; Fei Z; Xu Y BMC Genomics; 2011 Sep; 12():454. PubMed ID: 21936920 [TBL] [Abstract][Full Text] [Related]
6. Abscisic acid pathway involved in the regulation of watermelon fruit ripening and quality trait evolution. Wang Y; Guo S; Tian S; Zhang J; Ren Y; Sun H; Gong G; Zhang H; Xu Y PLoS One; 2017; 12(6):e0179944. PubMed ID: 28662086 [TBL] [Abstract][Full Text] [Related]
8. Comparative Transcriptome Analysis of Cultivated and Wild Watermelon during Fruit Development. Guo S; Sun H; Zhang H; Liu J; Ren Y; Gong G; Jiao C; Zheng Y; Yang W; Fei Z; Xu Y PLoS One; 2015; 10(6):e0130267. PubMed ID: 26079257 [TBL] [Abstract][Full Text] [Related]
9. Genetic Analysis of Fruit Quality Traits in Sweet Watermelon ( Mashilo J; Shimelis H; Ngwepe RM; Thungo Z Front Plant Sci; 2022; 13():834696. PubMed ID: 35392511 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome regulation of carotenoids in five flesh-colored watermelons (Citrullus lanatus). Yuan P; Umer MJ; He N; Zhao S; Lu X; Zhu H; Gong C; Diao W; Gebremeskel H; Kuang H; Liu W BMC Plant Biol; 2021 Apr; 21(1):203. PubMed ID: 33910512 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide identification and characterization of long non-coding RNAs involved in fruit ripening and the climacteric in Cucumis melo. Tian Y; Bai S; Dang Z; Hao J; Zhang J; Hasi A BMC Plant Biol; 2019 Aug; 19(1):369. PubMed ID: 31438855 [TBL] [Abstract][Full Text] [Related]
12. A Genome-Wide Analysis of the Subburaj S; Tu L; Lee K; Park GS; Lee H; Chun JP; Lim YP; Park MW; McGregor C; Lee GJ Genes (Basel); 2020 Sep; 11(10):. PubMed ID: 32987959 [TBL] [Abstract][Full Text] [Related]
13. Comparative proteomic analysis provides novel insights into the regulation mechanism underlying papaya (Carica papaya L.) exocarp during fruit ripening process. Jiang B; Ou S; Xu L; Mai W; Ye M; Gu H; Zhang T; Yuan C; Shen C; Wang J; Liu K BMC Plant Biol; 2019 Jun; 19(1):238. PubMed ID: 31170911 [TBL] [Abstract][Full Text] [Related]
14. Integrated Transcriptomic, Proteomic, and Metabolomics Analysis Reveals Peel Ripening of Harvested Banana under Natural Condition. Yun Z; Li T; Gao H; Zhu H; Gupta VK; Jiang Y; Duan X Biomolecules; 2019 Apr; 9(5):. PubMed ID: 31052343 [TBL] [Abstract][Full Text] [Related]
15. Quantitative proteomic investigation employing stable isotope labeling by peptide dimethylation on proteins of strawberry fruit at different ripening stages. Li L; Song J; Kalt W; Forney C; Tsao R; Pinto D; Chisholm K; Campbell L; Fillmore S; Li X J Proteomics; 2013 Dec; 94():219-39. PubMed ID: 24075981 [TBL] [Abstract][Full Text] [Related]
16. Linkage Mapping and Comparative Transcriptome Analysis of Firmness in Watermelon ( Sun L; Zhang Y; Cui H; Zhang L; Sha T; Wang C; Fan C; Luan F; Wang X Front Plant Sci; 2020; 11():831. PubMed ID: 32612625 [TBL] [Abstract][Full Text] [Related]
17. Comparative transcriptome analysis of climacteric fruit of Chinese pear (Pyrus ussuriensis) reveals new insights into fruit ripening. Huang G; Li T; Li X; Tan D; Jiang Z; Wei Y; Li J; Wang A PLoS One; 2014; 9(9):e107562. PubMed ID: 25215597 [TBL] [Abstract][Full Text] [Related]
18. Comparative Transcriptome Analysis Reveals the Biocontrol Mechanism of Jiang CH; Yao XF; Mi DD; Li ZJ; Yang BY; Zheng Y; Qi YJ; Guo JH Front Microbiol; 2019; 10():652. PubMed ID: 31001229 [TBL] [Abstract][Full Text] [Related]
19. Joint transcriptomic and metabolomic analysis provides new insights into drought resistance in watermelon ( Chen S; Zhong K; Li Y; Bai C; Xue Z; Wu Y Front Plant Sci; 2024; 15():1364631. PubMed ID: 38766468 [TBL] [Abstract][Full Text] [Related]
20. Morphological observation, RNA-Seq quantification, and expression profiling: novel insight into grafting-responsive carotenoid biosynthesis in watermelon grafted onto pumpkin rootstock. Liu G; Yang X; Xu J; Zhang M; Hou Q; Zhu L; Huang Y; Xiong A Acta Biochim Biophys Sin (Shanghai); 2017 Mar; 49(3):216-227. PubMed ID: 28040679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]