These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 35392910)
1. Development and characterization of a glycine biosensor system for fine-tuned metabolic regulation in Escherichia coli. Hong KQ; Zhang J; Jin B; Chen T; Wang ZW Microb Cell Fact; 2022 Apr; 21(1):56. PubMed ID: 35392910 [TBL] [Abstract][Full Text] [Related]
2. Characterization and Engineering of a Clostridium Glycine Riboswitch and Its Use To Control a Novel Metabolic Pathway for 5-Aminolevulinic Acid Production in Zhou L; Ren J; Li Z; Nie J; Wang C; Zeng AP ACS Synth Biol; 2019 Oct; 8(10):2327-2335. PubMed ID: 31550137 [TBL] [Abstract][Full Text] [Related]
4. Artificial Caprolactam-Specific Riboswitch as an Intracellular Metabolite Sensor. Jang S; Jang S; Im DK; Kang TJ; Oh MK; Jung GY ACS Synth Biol; 2019 Jun; 8(6):1276-1283. PubMed ID: 31074964 [TBL] [Abstract][Full Text] [Related]
5. Riboselector: riboswitch-based synthetic selection device to expedite evolution of metabolite-producing microorganisms. Jang S; Yang J; Seo SW; Jung GY Methods Enzymol; 2015; 550():341-62. PubMed ID: 25605394 [TBL] [Abstract][Full Text] [Related]
6. Engineering a Lysine-ON Riboswitch for Metabolic Control of Lysine Production in Corynebacterium glutamicum. Zhou LB; Zeng AP ACS Synth Biol; 2015 Dec; 4(12):1335-40. PubMed ID: 26300047 [TBL] [Abstract][Full Text] [Related]
7. Engineering and In Vivo Applications of Riboswitches. Hallberg ZF; Su Y; Kitto RZ; Hammond MC Annu Rev Biochem; 2017 Jun; 86():515-539. PubMed ID: 28375743 [TBL] [Abstract][Full Text] [Related]
8. Development of Synthetic Riboswitches to Guide the Evolution of Metabolite Production in Microorganisms. Kim M; Jang S; Jung GY Methods Mol Biol; 2022; 2518():135-155. PubMed ID: 35666444 [TBL] [Abstract][Full Text] [Related]
9. Engineering Riboswitches in Vivo Using Dual Genetic Selection and Fluorescence-Activated Cell Sorting. Page K; Shaffer J; Lin S; Zhang M; Liu JM ACS Synth Biol; 2018 Sep; 7(9):2000-2006. PubMed ID: 30119599 [TBL] [Abstract][Full Text] [Related]
10. Guanidine Biosensors Enable Comparison of Cellular Turn-on Kinetics of Riboswitch-Based Biosensor and Reporter. Manna S; Truong J; Hammond MC ACS Synth Biol; 2021 Mar; 10(3):566-578. PubMed ID: 33646758 [TBL] [Abstract][Full Text] [Related]
12. Dual genetic selection of synthetic riboswitches in Escherichia coli. Nomura Y; Yokobayashi Y Methods Mol Biol; 2014; 1111():131-40. PubMed ID: 24549616 [TBL] [Abstract][Full Text] [Related]
13. Development of Artificial Riboswitches for Monitoring of Naringenin In Vivo. Jang S; Jang S; Xiu Y; Kang TJ; Lee SH; Koffas MAG; Jung GY ACS Synth Biol; 2017 Nov; 6(11):2077-2085. PubMed ID: 28749656 [TBL] [Abstract][Full Text] [Related]
14. Design of a dual-responding genetic circuit for high-throughput identification of L-threonine-overproducing Escherichia coli. Su B; Lai P; Deng MR; Zhu H Bioresour Technol; 2024 Mar; 395():130407. PubMed ID: 38295961 [TBL] [Abstract][Full Text] [Related]
15. Design, Evolution, and Characterization of a Xylose Biosensor in Tang RQ; Wagner JM; Alper HS; Zhao XQ; Bai FW ACS Synth Biol; 2020 Oct; 9(10):2714-2722. PubMed ID: 32886884 [TBL] [Abstract][Full Text] [Related]
16. Systematic Comparison and Rational Design of Theophylline Riboswitches for Effective Gene Repression. Wang X; Fang C; Wang Y; Shi X; Yu F; Xiong J; Chou SH; He J Microbiol Spectr; 2023 Feb; 11(1):e0275222. PubMed ID: 36688639 [TBL] [Abstract][Full Text] [Related]
17. Engineering and characterization of fluorogenic glycine riboswitches. Ketterer S; Gladis L; Kozica A; Meier M Nucleic Acids Res; 2016 Jul; 44(12):5983-92. PubMed ID: 27220466 [TBL] [Abstract][Full Text] [Related]
18. Imaging metabolite dynamics in living cells using a Spinach-based riboswitch. You M; Litke JL; Jaffrey SR Proc Natl Acad Sci U S A; 2015 May; 112(21):E2756-65. PubMed ID: 25964329 [TBL] [Abstract][Full Text] [Related]