BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35393167)

  • 21. The effect of increased vocal intensity on interarticulator timing in speakers with Parkinson’s disease: a preliminary analysis.
    Richardson K; Sussman JE; Stathopoulos ET
    J Commun Disord; 2014; 52():44-64. PubMed ID: 25459460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Individual Monitoring of Vocal Effort With Relative Fundamental Frequency: Relationships With Aerodynamics and Listener Perception.
    Lien YA; Michener CM; Eadie TL; Stepp CE
    J Speech Lang Hear Res; 2015 Jun; 58(3):566-75. PubMed ID: 25675090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the Clinical Utility of Relative Fundamental Frequency as an Objective Measure of Vocal Hyperfunction.
    Roy N; Fetrow RA; Merrill RM; Dromey C
    J Speech Lang Hear Res; 2016 Oct; 59(5):1002-1017. PubMed ID: 27768175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of voice relative fundamental frequency estimates derived from an accelerometer signal and low-pass filtered and unprocessed microphone signals.
    Lien YA; Stepp CE
    J Acoust Soc Am; 2014 May; 135(5):2977-85. PubMed ID: 24815277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validation of an Algorithm for Semi-automated Estimation of Voice Relative Fundamental Frequency.
    Lien YS; Heller Murray ES; Calabrese CR; Michener CM; Van Stan JH; Mehta DD; Hillman RE; Noordzij JP; Stepp CE
    Ann Otol Rhinol Laryngol; 2017 Oct; 126(10):712-716. PubMed ID: 28849664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The relationship between acoustical and perceptual measures of vocal effort.
    McKenna VS; Stepp CE
    J Acoust Soc Am; 2018 Sep; 144(3):1643. PubMed ID: 30424674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Refining algorithmic estimation of relative fundamental frequency: Accounting for sample characteristics and fundamental frequency estimation method.
    Vojtech JM; Segina RK; Buckley DP; Kolin KR; Tardif MC; Noordzij JP; Stepp CE
    J Acoust Soc Am; 2019 Nov; 146(5):3184. PubMed ID: 31795681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Effects of Stress Type, Vowel Identity, Baseline f
    Park Y; Stepp CE
    J Voice; 2019 Sep; 33(5):603-610. PubMed ID: 30078521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of phonetic context on relative fundamental frequency.
    Lien YA; Gattuccio CI; Stepp CE
    J Speech Lang Hear Res; 2014 Aug; 57(4):1259-67. PubMed ID: 24686466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fundamental frequency during phonetically governed devoicing in normal young and aged speakers.
    Watson BC
    J Acoust Soc Am; 1998 Jun; 103(6):3642-7. PubMed ID: 9637045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased vocal intensity due to the Lombard effect in speakers with Parkinson's disease: simultaneous laryngeal and respiratory strategies.
    Stathopoulos ET; Huber JE; Richardson K; Kamphaus J; DeCicco D; Darling M; Fulcher K; Sussman JE
    J Commun Disord; 2014; 48():1-17. PubMed ID: 24438910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated estimation of relative fundamental frequency.
    Lien YA; Stepp CE
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2136-9. PubMed ID: 24110143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship of vocal fold atrophy to swallowing safety and cough function in Parkinson's disease.
    Yiu Y; Curtis JA; Perry SE; Troche MS
    Laryngoscope; 2020 Feb; 130(2):303-308. PubMed ID: 31254293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of the infant airway with videorecorded flexible laryngoscopy and the objective analysis of vocal fold abduction.
    Waters KA; Woo P; Mortelliti AJ; Colton R
    Otolaryngol Head Neck Surg; 1996 Apr; 114(4):554-61. PubMed ID: 8643264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship between acoustic measures and judgments of intelligibility in Parkinson's disease: a within-speaker approach.
    Feenaughty L; Tjaden K; Sussman J
    Clin Linguist Phon; 2014 Nov; 28(11):857-78. PubMed ID: 24874184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arytenoid cartilage movements are hypokinetic in Parkinson's disease: A quantitative dynamic computerised tomographic study.
    Perju-Dumbrava L; Lau K; Phyland D; Papanikolaou V; Finlay P; Beare R; Bardin P; Stuckey S; Kempster P; Thyagarajan D
    PLoS One; 2017; 12(11):e0186611. PubMed ID: 29099841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endoscopic measurement of vocal fold movement during adduction and abduction.
    Dailey SH; Kobler JB; Hillman RE; Tangrom K; Thananart E; Mauri M; Zeitels SM
    Laryngoscope; 2005 Jan; 115(1):178-83. PubMed ID: 15630390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative microlaryngoscopic measurements of vocal fold polyps, glottal gap and their relation to vocal function.
    Uloza V; Kaseta M; Pribuisiene R; Saferis V; Jokūzis V; Gelzinis A; Bacauskiene M
    Medicina (Kaunas); 2008; 44(4):266-72. PubMed ID: 18469502
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification of Vocal Fold Atrophy in Age-Related and Parkinson's Disease-Related Vocal Atrophy.
    Baertsch HC; Bhatt NK; Giliberto JP; Dixon C; Merati AL; Sauder C
    Laryngoscope; 2023 Jun; 133(6):1462-1469. PubMed ID: 36111826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Effectiveness of Low-Level Light Therapy in Attenuating Vocal Fatigue.
    Kagan LS; Heaton JT
    J Voice; 2017 May; 31(3):384.e15-384.e23. PubMed ID: 27839705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.