These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 35393501)
1. 3D-SLIP model based dynamic stability strategy for legged robots with impact disturbance rejection. Han B; Yi H; Xu Z; Yang X; Luo X Sci Rep; 2022 Apr; 12(1):5892. PubMed ID: 35393501 [TBL] [Abstract][Full Text] [Related]
2. Leg-adjustment strategies for stable running in three dimensions. Peuker F; Maufroy C; Seyfarth A Bioinspir Biomim; 2012 Sep; 7(3):036002. PubMed ID: 22498642 [TBL] [Abstract][Full Text] [Related]
3. Analysis and control of a running spring-mass model with a trunk based on virtual pendulum concept. Karagoz OK; Secer G; Ankarali MM; Saranli U Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35523159 [TBL] [Abstract][Full Text] [Related]
4. Running Gait and Control of Quadruped Robot Based on SLIP Model. He X; Li X; Wang X; Meng F; Guan X; Jiang Z; Yuan L; Ba K; Ma G; Yu B Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248598 [TBL] [Abstract][Full Text] [Related]
5. On the analysis and control of a bipedal legged locomotion model via partial feedback linearization. Hamzaçebi H; Uyanik I; Morgül Ö Bioinspir Biomim; 2024 Jul; 19(5):. PubMed ID: 38936396 [TBL] [Abstract][Full Text] [Related]
6. A flight-phase terrain following control strategy for stable and robust hopping of a one-legged robot under large terrain variations. Shemer N; Degani A Bioinspir Biomim; 2017 Aug; 12(4):046011. PubMed ID: 28524066 [TBL] [Abstract][Full Text] [Related]
7. Morphological and control criteria for self-stable underwater hopping. Calisti M; Laschi C Bioinspir Biomim; 2017 Nov; 13(1):016001. PubMed ID: 28976367 [TBL] [Abstract][Full Text] [Related]
8. Locomotory behaviour of the intertidal marble crab (Pachygrapsus marmoratus) supports the underwater spring-loaded inverted pendulum as a fundamental model for punting in animals. Chellapurath M; Stefanni S; Fiorito G; Sabatini AM; Laschi C; Calisti M Bioinspir Biomim; 2020 Jul; 15(5):055004. PubMed ID: 32454476 [TBL] [Abstract][Full Text] [Related]
9. The generalized spring-loaded inverted pendulum model for analysis of various planar reduced-order models and for optimal robot leg design. Lu WC; Lin PC Bioinspir Biomim; 2024 Feb; 19(2):. PubMed ID: 38346329 [TBL] [Abstract][Full Text] [Related]
10. Human-like hopping in machines : Feedback- versus feed-forward-controlled motions. Oehlke J; Beckerle P; Seyfarth A; Sharbafi MA Biol Cybern; 2019 Jun; 113(3):227-238. PubMed ID: 30370464 [TBL] [Abstract][Full Text] [Related]
11. Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots. Drama Ö; Badri-Spröwitz A Bioinspir Biomim; 2020 Mar; 15(3):036013. PubMed ID: 32052793 [TBL] [Abstract][Full Text] [Related]
12. A fundamental mechanism of legged locomotion with hip torque and leg damping. Shen ZH; Seipel JE Bioinspir Biomim; 2012 Dec; 7(4):046010. PubMed ID: 22989956 [TBL] [Abstract][Full Text] [Related]
14. Optimizing and designing a leg shape to increase robustness of a running robot on rough terrain. Gaathon A; Degani A Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36270611 [TBL] [Abstract][Full Text] [Related]
15. On Slip Detection for Quadruped Robots. Nisticò Y; Fahmi S; Pallottino L; Semini C; Fink G Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458952 [TBL] [Abstract][Full Text] [Related]
16. A Torque-actuated dissipative spring loaded inverted pendulum model with rolling contact and Its application to hexapod running. Hu CJ; Wang TK; Huang CK; Lin PC Bioinspir Biomim; 2019 Feb; 14(2):026005. PubMed ID: 30616229 [TBL] [Abstract][Full Text] [Related]
17. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs. Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ Front Robot AI; 2018; 5():67. PubMed ID: 33500946 [TBL] [Abstract][Full Text] [Related]
18. Task-level strategies for human sagittal-plane running maneuvers are consistent with robotic control policies. Qiao M; Jindrich DL PLoS One; 2012; 7(12):e51888. PubMed ID: 23284804 [TBL] [Abstract][Full Text] [Related]
19. Adapting stiffness and attack angle through trial and error to increase self-stability in locomotion. Walker K; Hauser H J Biomech; 2019 Apr; 87():28-36. PubMed ID: 30876737 [TBL] [Abstract][Full Text] [Related]
20. A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot. Huang KJ; Huang CK; Lin PC Bioinspir Biomim; 2014 Oct; 9(4):046004. PubMed ID: 25291720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]