These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 35393511)

  • 1. Multi-fidelity information fusion with concatenated neural networks.
    Pawar S; San O; Vedula P; Rasheed A; Kvamsdal T
    Sci Rep; 2022 Apr; 12(1):5900. PubMed ID: 35393511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physics-Guided Deep Learning for Drag Force Prediction in Dense Fluid-Particulate Systems.
    Muralidhar N; Bu J; Cao Z; He L; Ramakrishnan N; Tafti D; Karpatne A
    Big Data; 2020 Oct; 8(5):431-449. PubMed ID: 33090021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operator learning for urban water clarification hydrodynamics and particulate matter transport with physics-informed neural networks.
    Li H; Shatarah M
    Water Res; 2024 Mar; 251():121123. PubMed ID: 38241806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Modelling by Machine Learning Corrections of Analytical Model Predictions towards High-Fidelity Simulation Solutions.
    Bock FE; Keller S; Huber N; Klusemann B
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifidelity computing for coupling full and reduced order models.
    Ahmed SE; San O; Kara K; Younis R; Rasheed A
    PLoS One; 2021; 16(2):e0246092. PubMed ID: 33571229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physics-Guided Generative Adversarial Networks for Sea Subsurface Temperature Prediction.
    Meng Y; Rigall E; Chen X; Gao F; Dong J; Chen S
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3357-3370. PubMed ID: 34757914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physics-informed deep learning for prediction of CO
    Shokouhi P; Kumar V; Prathipati S; Hosseini SA; Giles CL; Kifer D
    J Contam Hydrol; 2021 Aug; 241():103835. PubMed ID: 34091408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing Physics-Informed Neural Networks with Architecture Based on Analytical Modification of Numerical Methods by Solving the Problem of Modelling Processes in a Chemical Reactor.
    Tarkhov D; Lazovskaya T; Malykhina G
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-accelerated computational framework based on Physics Informed Neural Network for the solution of linear elasticity.
    Roy AM; Bose R; Sundararaghavan V; Arróyave R
    Neural Netw; 2023 May; 162():472-489. PubMed ID: 36966712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-fidelity surrogate modeling through hybrid machine learning for biomechanical and finite element analysis of soft tissues.
    Sajjadinia SS; Carpentieri B; Shriram D; Holzapfel GA
    Comput Biol Med; 2022 Sep; 148():105699. PubMed ID: 35715259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised Denoising and Super-Resolution of Vascular Flow Data by Physics-Informed Machine Learning.
    Sautory T; Shadden SC
    J Biomech Eng; 2024 Sep; 146(9):. PubMed ID: 38529728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep neural network enabled corrective source term approach to hybrid analysis and modeling.
    Blakseth SS; Rasheed A; Kvamsdal T; San O
    Neural Netw; 2022 Feb; 146():181-199. PubMed ID: 34894481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physics-constrained, low-dimensional models for magnetohydrodynamics: First-principles and data-driven approaches.
    Kaptanoglu AA; Morgan KD; Hansen CJ; Brunton SL
    Phys Rev E; 2021 Jul; 104(1-2):015206. PubMed ID: 34412353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time simulation of viscoelastic tissue behavior with physics-guided deep learning.
    Karami M; Lombaert H; Rivest-Hénault D
    Comput Med Imaging Graph; 2023 Mar; 104():102165. PubMed ID: 36599223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerating hydrodynamic simulations of urban drainage systems with physics-guided machine learning.
    Palmitessa R; Grum M; Engsig-Karup AP; Löwe R
    Water Res; 2022 Sep; 223():118972. PubMed ID: 35994785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural optimization machine: a neural network approach for optimization and its application in additive manufacturing with physics-guided learning.
    Chen J; Liu Y
    Philos Trans A Math Phys Eng Sci; 2023 Nov; 381(2260):20220405. PubMed ID: 37742708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning in biological physics: From biomolecular prediction to design.
    Martin J; Lequerica Mateos M; Onuchic JN; Coluzza I; Morcos F
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2311807121. PubMed ID: 38913893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing efficiency and accuracy of magnetic interaction calculations in colloidal simulation through machine learning.
    Pan C; Mahmoudabadbozchelou M; Duan X; Benneyan JC; Jamali S; Erb RM
    J Colloid Interface Sci; 2022 Apr; 611():29-38. PubMed ID: 34929436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.