These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 35393735)
1. Tunable Domain Switching Features of Incommensurate Antiferroelectric Ceramics Realizing Excellent Energy Storage Properties. Ge G; Shi C; Chen C; Shi Y; Yan F; Bai H; Yang J; Lin J; Shen B; Zhai J Adv Mater; 2022 Jun; 34(24):e2201333. PubMed ID: 35393735 [TBL] [Abstract][Full Text] [Related]
2. Realizing Stable Relaxor Antiferroelectric and Superior Energy Storage Properties in (Na Chen J; Qi H; Zuo R ACS Appl Mater Interfaces; 2020 Jul; 12(29):32871-32879. PubMed ID: 32614595 [TBL] [Abstract][Full Text] [Related]
3. Achieving Ultrahigh Energy Storage Performance for NaNbO Wei K; Duan J; Zhou X; Li G; Zhang D; Li H ACS Appl Mater Interfaces; 2023 Oct; 15(41):48354-48364. PubMed ID: 37791962 [TBL] [Abstract][Full Text] [Related]
4. Giant Energy Storage Density with Antiferroelectric-Like Properties in BNT-Based Ceramics via Phase Structure Engineering. Tang L; Yu Z; Pan Z; Zhao J; Fu Z; Chen X; Li H; Li P; Liu J; Zhai J Small; 2023 Oct; 19(40):e2302346. PubMed ID: 37287364 [TBL] [Abstract][Full Text] [Related]
5. Synergistically Optimizing Pressure-Driven Energy Conversion and Energy-Harvesting Application via Modulating an Antiferroelectric-to-Ferroelectric Overlap Zone in Antiferroelectric Ceramics. Xie M; Nie H; Han B; Bao Y; Cao F; Wang G ACS Appl Mater Interfaces; 2024 Jan; 16(4):4934-4947. PubMed ID: 38252808 [TBL] [Abstract][Full Text] [Related]
6. Achieving Ultrahigh Energy Storage Density of La and Ta Codoped AgNbO Li B; Yan Z; Zhou X; Qi H; Koval V; Luo X; Luo H; Yan H; Zhang D ACS Appl Mater Interfaces; 2023 Jan; 15(3):4246-4256. PubMed ID: 36639350 [TBL] [Abstract][Full Text] [Related]
7. Ultrahigh Energy Storage Density and High Efficiency in Lead-Free (Bi Ma J; Zhang D; Ying F; Li X; Li L; Guo S; Huan Y; Zhang J; Wang J; Zhang ST ACS Appl Mater Interfaces; 2022 May; 14(17):19704-19713. PubMed ID: 35442644 [TBL] [Abstract][Full Text] [Related]
8. Ultrahigh Energy Storage Density and Efficiency in Orthorhombic PLZST Antiferroelectric Ceramics via Composition Regulation. Wang X; Sun H; Zhao H; Wang G; Li Y; Tang M; Xu R; Feng Y; Wei X; Xu Z ACS Appl Mater Interfaces; 2024 Apr; 16(14):17787-17796. PubMed ID: 38533892 [TBL] [Abstract][Full Text] [Related]
9. Ultrahigh Energy-Storage Performances in Lead-free Na Li T; Jiang X; Li J; Xie A; Fu J; Zuo R ACS Appl Mater Interfaces; 2022 May; 14(19):22263-22269. PubMed ID: 35502874 [TBL] [Abstract][Full Text] [Related]
10. Synergy of a Stabilized Antiferroelectric Phase and Domain Engineering Boosting the Energy Storage Performance of NaNbO Liu J; Li P; Li C; Bai W; Wu S; Zheng P; Zhang J; Zhai J ACS Appl Mater Interfaces; 2022 Apr; 14(15):17662-17673. PubMed ID: 35389613 [TBL] [Abstract][Full Text] [Related]
11. Outstanding Energy Storage Performance of NBT-Based Ceramics under Moderate Electric Field Achieved via Antiferroelectric Engineering. Cao W; Li L; Zhao H; Wang C; Liang C; Li F; Huang X; Wang C ACS Appl Mater Interfaces; 2023 Aug; 15(32):38633-38643. PubMed ID: 37531460 [TBL] [Abstract][Full Text] [Related]
12. High Energy Storage Density and Impedance Response of PLZT2/95/5 Antiferroelectric Ceramics. Li B; Liu Q; Tang X; Zhang T; Jiang Y; Li W; Luo J Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772503 [TBL] [Abstract][Full Text] [Related]
13. A Combined Optimization Strategy for Improvement of Comprehensive Energy Storage Performance in Sodium Niobate-Based Antiferroelectric Ceramics. Wang X; Wang X; Huan Y; Li C; Ouyang J; Wei T ACS Appl Mater Interfaces; 2022 Feb; 14(7):9330-9339. PubMed ID: 35156378 [TBL] [Abstract][Full Text] [Related]
14. Ferroelectric and Relaxor-Ferroelectric Phases Coexisting Boosts Energy Storage Performance in (Bi Li Y; Lu G; Zhao Y; Zhao R; Zhao J; Hao J; Bai W; Li P; Li W Molecules; 2024 Jul; 29(13):. PubMed ID: 38999139 [TBL] [Abstract][Full Text] [Related]
15. High Energy Storage Performance in La-Doped AgNbO Zhao M; Wang J; Yuan H; Zheng Z; Zhao L ACS Appl Mater Interfaces; 2022 Nov; 14(43):48926-48935. PubMed ID: 36260490 [TBL] [Abstract][Full Text] [Related]
16. Compromise Optimized Superior Energy Storage Performance in Lead-Free Antiferroelectrics by Antiferroelectricity Modulation and Nanodomain Engineering. Chen L; Zhou C; Zhu L; Qi H; Chen J Small; 2024 Feb; 20(7):e2306486. PubMed ID: 37803415 [TBL] [Abstract][Full Text] [Related]
17. Effective Strategy to Achieve Excellent Energy Storage Properties in Lead-Free BaTiO Dai Z; Xie J; Liu W; Wang X; Zhang L; Zhou Z; Li J; Ren X ACS Appl Mater Interfaces; 2020 Jul; 12(27):30289-30296. PubMed ID: 32530604 [TBL] [Abstract][Full Text] [Related]
18. Lead-Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance. Zhao L; Liu Q; Gao J; Zhang S; Li JF Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28628242 [TBL] [Abstract][Full Text] [Related]
19. Superior Energy-Storage Properties in Bi Zhang Y; Xie A; Fu J; Jiang X; Li T; Zhou C; Zuo R ACS Appl Mater Interfaces; 2022 Sep; 14(35):40043-40051. PubMed ID: 36006029 [TBL] [Abstract][Full Text] [Related]
20. Excellent Energy-Storage Properties Achieved in BaTiO Lin Y; Li D; Zhang M; Zhan S; Yang Y; Yang H; Yuan Q ACS Appl Mater Interfaces; 2019 Oct; 11(40):36824-36830. PubMed ID: 31452366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]