BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35394015)

  • 1. scGraph: a graph neural network-based approach to automatically identify cell types.
    Yin Q; Liu Q; Fu Z; Zeng W; Zhang B; Zhang X; Jiang R; Lv H
    Bioinformatics; 2022 May; 38(11):2996-3003. PubMed ID: 35394015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scGNN 2.0: a graph neural network tool for imputation and clustering of single-cell RNA-Seq data.
    Gu H; Cheng H; Ma A; Li Y; Wang J; Xu D; Ma Q
    Bioinformatics; 2022 Nov; 38(23):5322-5325. PubMed ID: 36250784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GNN-based embedding for clustering scRNA-seq data.
    Ciortan M; Defrance M
    Bioinformatics; 2022 Jan; 38(4):1037-1044. PubMed ID: 34850828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ProtoCell4P: an explainable prototype-based neural network for patient classification using single-cell RNA-seq.
    Xiong G; Bekiranov S; Zhang A
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37540223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data.
    Jin S; MacLean AL; Peng T; Nie Q
    Bioinformatics; 2018 Jun; 34(12):2077-2086. PubMed ID: 29415263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scCNC: a method based on capsule network for clustering scRNA-seq data.
    Wang HY; Zhao JP; Zheng CH; Su YS
    Bioinformatics; 2022 Aug; 38(15):3703-3709. PubMed ID: 35699473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling.
    Song D; Li K; Hemminger Z; Wollman R; Li JJ
    Bioinformatics; 2021 Jul; 37(Suppl_1):i358-i366. PubMed ID: 34252925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep single-cell RNA-seq data clustering with graph prototypical contrastive learning.
    Lee J; Kim S; Hyun D; Lee N; Kim Y; Park C
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37233193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones.
    Müller S; Cho A; Liu SJ; Lim DA; Diaz A
    Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continually adapting pre-trained language model to universal annotation of single-cell RNA-seq data.
    Wan H; Yuan M; Fu Y; Deng M
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38388681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
    Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B
    Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CellVGAE: an unsupervised scRNA-seq analysis workflow with graph attention networks.
    Buterez D; Bica I; Tariq I; Andrés-Terré H; Liò P
    Bioinformatics; 2022 Feb; 38(5):1277-1286. PubMed ID: 34864884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adversarial dense graph convolutional networks for single-cell classification.
    Wang K; Li Z; You ZH; Han P; Nie R
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36661313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CStreet: a computed Cell State trajectory inference method for time-series single-cell RNA sequencing data.
    Zhao C; Xiu W; Hua Y; Zhang N; Zhang Y
    Bioinformatics; 2021 Nov; 37(21):3774-3780. PubMed ID: 34196686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.