These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35394015)

  • 41. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation.
    Matsumoto H; Kiryu H; Furusawa C; Ko MSH; Ko SBH; Gouda N; Hayashi T; Nikaido I
    Bioinformatics; 2017 Aug; 33(15):2314-2321. PubMed ID: 28379368
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identify, quantify and characterize cellular communication from single-cell RNA sequencing data with scSeqComm.
    Baruzzo G; Cesaro G; Di Camillo B
    Bioinformatics; 2022 Mar; 38(7):1920-1929. PubMed ID: 35043939
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PsiNorm: a scalable normalization for single-cell RNA-seq data.
    Borella M; Martello G; Risso D; Romualdi C
    Bioinformatics; 2021 Dec; 38(1):164-172. PubMed ID: 34499096
    [TBL] [Abstract][Full Text] [Related]  

  • 44. powsimR: power analysis for bulk and single cell RNA-seq experiments.
    Vieth B; Ziegenhain C; Parekh S; Enard W; Hellmann I
    Bioinformatics; 2017 Nov; 33(21):3486-3488. PubMed ID: 29036287
    [TBL] [Abstract][Full Text] [Related]  

  • 45. BLTSA: pseudotime prediction for single cells by branched local tangent space alignment.
    Li L; Zhao Y; Li H; Zhang S
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36692140
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Learning discriminative and structural samples for rare cell types with deep generative model.
    Wang H; Ma X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35914950
    [TBL] [Abstract][Full Text] [Related]  

  • 47. GMHCC: high-throughput analysis of biomolecular data using graph-based multiple hierarchical consensus clustering.
    Lu Y; Yu Z; Wang Y; Ma Z; Wong KC; Li X
    Bioinformatics; 2022 May; 38(11):3020-3028. PubMed ID: 35451457
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data.
    Arisdakessian C; Poirion O; Yunits B; Zhu X; Garmire LX
    Genome Biol; 2019 Oct; 20(1):211. PubMed ID: 31627739
    [TBL] [Abstract][Full Text] [Related]  

  • 49. IRIS-FGM: an integrative single-cell RNA-Seq interpretation system for functional gene module analysis.
    Chang Y; Allen C; Wan C; Chung D; Zhang C; Li Z; Ma Q
    Bioinformatics; 2021 Sep; 37(18):3045-3047. PubMed ID: 33595622
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Joint learning dimension reduction and clustering of single-cell RNA-sequencing data.
    Wu W; Ma X
    Bioinformatics; 2020 Jun; 36(12):3825-3832. PubMed ID: 32246821
    [TBL] [Abstract][Full Text] [Related]  

  • 51. scVAE: variational auto-encoders for single-cell gene expression data.
    Grønbech CH; Vording MF; Timshel PN; Sønderby CK; Pers TH; Winther O
    Bioinformatics; 2020 Aug; 36(16):4415-4422. PubMed ID: 32415966
    [TBL] [Abstract][Full Text] [Related]  

  • 52. psupertime: supervised pseudotime analysis for time-series single-cell RNA-seq data.
    Macnair W; Gupta R; Claassen M
    Bioinformatics; 2022 Jun; 38(Suppl 1):i290-i298. PubMed ID: 35758781
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of cell-cell interaction methods by integrating single-cell RNA sequencing data with spatial information.
    Liu Z; Sun D; Wang C
    Genome Biol; 2022 Oct; 23(1):218. PubMed ID: 36253792
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 55. IndepthPathway: an integrated tool for in-depth pathway enrichment analysis based on single-cell sequencing data.
    Lee S; Deng L; Wang Y; Wang K; Sartor MA; Wang XS
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37243667
    [TBL] [Abstract][Full Text] [Related]  

  • 56. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CLAIRE: contrastive learning-based batch correction framework for better balance between batch mixing and preservation of cellular heterogeneity.
    Yan X; Zheng R; Wu F; Li M
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36821425
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-throughput single-cell RNA-seq data imputation and characterization with surrogate-assisted automated deep learning.
    Li X; Li S; Huang L; Zhang S; Wong KC
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34553763
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cell-level somatic mutation detection from single-cell RNA sequencing.
    Vu TN; Nguyen HN; Calza S; Kalari KR; Wang L; Pawitan Y
    Bioinformatics; 2019 Nov; 35(22):4679-4687. PubMed ID: 31028395
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cross-species cell-type assignment from single-cell RNA-seq data by a heterogeneous graph neural network.
    Liu X; Shen Q; Zhang S
    Genome Res; 2023 Jan; 33(1):96-111. PubMed ID: 36526433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.