These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 35394075)
1. Frequency-domain analysis of fNIRS fluctuations induced by rhythmic mental arithmetic. Molina-Rodríguez S; Mirete-Fructuoso M; Martínez LM; Ibañez-Ballesteros J Psychophysiology; 2022 Oct; 59(10):e14063. PubMed ID: 35394075 [TBL] [Abstract][Full Text] [Related]
2. Identifying ADHD boys by very-low frequency prefrontal fNIRS fluctuations during a rhythmic mental arithmetic task. Ortuño-Miró S; Molina-Rodríguez S; Belmonte C; Ibañez-Ballesteros J J Neural Eng; 2023 May; 20(3):. PubMed ID: 37218310 [No Abstract] [Full Text] [Related]
3. Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI. Erdoğan SB; Yücel MA; Akın A Neuroimage; 2014 Feb; 87():490-504. PubMed ID: 24148922 [TBL] [Abstract][Full Text] [Related]
4. The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy. Kirilina E; Jelzow A; Heine A; Niessing M; Wabnitz H; Brühl R; Ittermann B; Jacobs AM; Tachtsidis I Neuroimage; 2012 May; 61(1):70-81. PubMed ID: 22426347 [TBL] [Abstract][Full Text] [Related]
5. Hemodynamic signals in fNIRS. Hoshi Y Prog Brain Res; 2016; 225():153-79. PubMed ID: 27130415 [TBL] [Abstract][Full Text] [Related]
6. Quantitative evaluation of deep and shallow tissue layers' contribution to fNIRS signal using multi-distance optodes and independent component analysis. Funane T; Atsumori H; Katura T; Obata AN; Sato H; Tanikawa Y; Okada E; Kiguchi M Neuroimage; 2014 Jan; 85 Pt 1():150-65. PubMed ID: 23439443 [TBL] [Abstract][Full Text] [Related]
7. Separation of fNIRS signals into functional and systemic components based on differences in hemodynamic modalities. Yamada T; Umeyama S; Matsuda K PLoS One; 2012; 7(11):e50271. PubMed ID: 23185590 [TBL] [Abstract][Full Text] [Related]
8. Detectability of hemodynamic oscillations in cerebral cortex through functional near-infrared spectroscopy: a simulation study. Contini L; Amendola C; Contini D; Torricelli A; Spinelli L; Re R Neurophotonics; 2024 Jul; 11(3):035001. PubMed ID: 38962430 [TBL] [Abstract][Full Text] [Related]
9. Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: an easy-to-use filter method. Haeussinger FB; Dresler T; Heinzel S; Schecklmann M; Fallgatter AJ; Ehlis AC Neuroimage; 2014 Jul; 95():69-79. PubMed ID: 24657779 [TBL] [Abstract][Full Text] [Related]
10. Functional near-infrared spectroscopy in the evaluation of urban rail transit drivers' mental workload under simulated driving conditions. Li LP; Liu ZG; Zhu HY; Zhu L; Huang YC Ergonomics; 2019 Mar; 62(3):406-419. PubMed ID: 30307379 [TBL] [Abstract][Full Text] [Related]
11. Improvement in Recovery of Hemodynamic Responses by Extended Kalman Filter With Non-Linear State-Space Model and Short Separation Measurement. Dong S; Jeong J IEEE Trans Biomed Eng; 2019 Aug; 66(8):2152-2162. PubMed ID: 30507523 [TBL] [Abstract][Full Text] [Related]
12. Reduction of global interference of scalp-hemodynamics in functional near-infrared spectroscopy using short distance probes. Sato T; Nambu I; Takeda K; Aihara T; Yamashita O; Isogaya Y; Inoue Y; Otaka Y; Wada Y; Kawato M; Sato MA; Osu R Neuroimage; 2016 Nov; 141():120-132. PubMed ID: 27374729 [TBL] [Abstract][Full Text] [Related]
13. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study. Basso Moro S; Bisconti S; Muthalib M; Spezialetti M; Cutini S; Ferrari M; Placidi G; Quaresima V Neuroimage; 2014 Jan; 85 Pt 1():451-60. PubMed ID: 23684867 [TBL] [Abstract][Full Text] [Related]
14. Evoked hemodynamic response estimation using ensemble empirical mode decomposition based adaptive algorithm applied to dual channel functional near infrared spectroscopy (fNIRS). Hemmati Berivanlou N; Setarehdan SK; Ahmadi Noubari H J Neurosci Methods; 2014 Mar; 224():13-25. PubMed ID: 24365048 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity. Pinti P; Cardone D; Merla A Sci Rep; 2015 Dec; 5():17471. PubMed ID: 26632763 [TBL] [Abstract][Full Text] [Related]
16. Validation of a novel hemodynamic model for coherent hemodynamics spectroscopy (CHS) and functional brain studies with fNIRS and fMRI. Pierro ML; Hallacoglu B; Sassaroli A; Kainerstorfer JM; Fantini S Neuroimage; 2014 Jan; 85 Pt 1(0 1):222-33. PubMed ID: 23562703 [TBL] [Abstract][Full Text] [Related]
17. Feasibility of using fNIRS to explore motor-related regional haemodynamic signal changes in patients with sensorimotor impairment and healthy controls: A pilot study. Bunketorp Käll L; Björnsdotter M; Wangdell J; Reinholdt C; Cooper R; Skau S Restor Neurol Neurosci; 2023; 41(3-4):91-101. PubMed ID: 37458052 [TBL] [Abstract][Full Text] [Related]
18. Accurate hemodynamic response estimation by removal of stimulus-evoked superficial response in fNIRS signals. Galli A; Brigadoi S; Giorgi G; Sparacino G; Narduzzi C J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33440365 [No Abstract] [Full Text] [Related]
19. Very-low-frequency oscillations of cerebral hemodynamics and blood pressure are affected by aging and cognitive load. Vermeij A; Meel-van den Abeelen AS; Kessels RP; van Beek AH; Claassen JA Neuroimage; 2014 Jan; 85 Pt 1():608-15. PubMed ID: 23660026 [TBL] [Abstract][Full Text] [Related]
20. Different mechanosensory stimulations of the lower back elicit specific changes in hemodynamics and oxygenation in cortical sensorimotor areas-A fNIRS study. Vrana A; Meier ML; Hotz-Boendermaker S; Humphreys BK; Scholkmann F Brain Behav; 2016 Dec; 6(12):e00575. PubMed ID: 28031998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]