BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35394186)

  • 1. Deep learning-based algorithm improved radiologists' performance in bone metastases detection on CT.
    Noguchi S; Nishio M; Sakamoto R; Yakami M; Fujimoto K; Emoto Y; Kubo T; Iizuka Y; Nakagomi K; Miyasa K; Satoh K; Nakamoto Y
    Eur Radiol; 2022 Nov; 32(11):7976-7987. PubMed ID: 35394186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based algorithm improves radiologists' performance in lung cancer bone metastases detection on computed tomography.
    Huo T; Xie Y; Fang Y; Wang Z; Liu P; Duan Y; Zhang J; Wang H; Xue M; Liu S; Ye Z
    Front Oncol; 2023; 13():1125637. PubMed ID: 36845701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of CAD on radiologists' detection of lung nodules on thoracic CT scans: analysis of an observer performance study by nodule size.
    Sahiner B; Chan HP; Hadjiiski LM; Cascade PN; Kazerooni EA; Chughtai AR; Poopat C; Song T; Frank L; Stojanovska J; Attili A
    Acad Radiol; 2009 Dec; 16(12):1518-30. PubMed ID: 19896069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Deep Learning Algorithm for Detecting Spinal Metastases on Computed Tomography Images.
    Motohashi M; Funauchi Y; Adachi T; Fujioka T; Otaka N; Kamiko Y; Okada T; Tateishi U; Okawa A; Yoshii T; Sato S
    Spine (Phila Pa 1976); 2024 Mar; 49(6):390-397. PubMed ID: 38084012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic detection of lytic and blastic thoracolumbar spine metastases on computed tomography.
    Hammon M; Dankerl P; Tsymbal A; Wels M; Kelm M; May M; Suehling M; Uder M; Cavallaro A
    Eur Radiol; 2013 Jul; 23(7):1862-70. PubMed ID: 23397381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal Subtraction of Serial CT Images with Large Deformation Diffeomorphic Metric Mapping in the Identification of Bone Metastases.
    Sakamoto R; Yakami M; Fujimoto K; Nakagomi K; Kubo T; Emoto Y; Akasaka T; Aoyama G; Yamamoto H; Miller MI; Mori S; Togashi K
    Radiology; 2017 Nov; 285(2):629-639. PubMed ID: 28678671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs.
    Nam JG; Park S; Hwang EJ; Lee JH; Jin KN; Lim KY; Vu TH; Sohn JH; Hwang S; Goo JM; Park CM
    Radiology; 2019 Jan; 290(1):218-228. PubMed ID: 30251934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal subtraction CT with nonrigid image registration improves detection of bone metastases by radiologists: results of a large-scale observer study.
    Onoue K; Yakami M; Nishio M; Sakamoto R; Aoyama G; Nakagomi K; Iizuka Y; Kubo T; Emoto Y; Akasaka T; Satoh K; Yamamoto H; Isoda H; Togashi K
    Sci Rep; 2021 Sep; 11(1):18422. PubMed ID: 34531429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal subtraction of computed tomography images improves detectability of bone metastases by radiology residents.
    Onoue K; Nishio M; Yakami M; Sakamoto R; Aoyama G; Nakagomi K; Iizuka Y; Kubo T; Emoto Y; Akasaka T; Satoh K; Yamamoto H; Isoda H; Togashi K
    Eur Radiol; 2019 Dec; 29(12):6439-6442. PubMed ID: 31273458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of temporal subtraction computed tomography images using deep learning in detecting vertebral bone metastases.
    Hoshiai S; Hanaoka S; Masumoto T; Nomura Y; Mori K; Okamoto Y; Saida T; Ishiguro T; Sakai M; Nakajima T
    Eur J Radiol; 2022 Sep; 154():110445. PubMed ID: 35901601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based denoising algorithm in comparison to iterative reconstruction and filtered back projection: a 12-reader phantom study.
    Kim Y; Oh DY; Chang W; Kang E; Ye JC; Lee K; Kim HY; Kim YH; Park JH; Lee YJ; Lee KH
    Eur Radiol; 2021 Nov; 31(11):8755-8764. PubMed ID: 33885958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal subtraction of low-dose and relatively thick-slice CT images with large deformation diffeomorphic metric mapping and adaptive voxel matching for detection of bone metastases: A STARD-compliant article.
    Tsuchiya M; Masui T; Katayama M; Hayashi Y; Yamada T; Terauchi K; Kawamura K; Ishikawa R; Mizobe H; Yamamichi J; Sakahara H; Goshima S
    Medicine (Baltimore); 2020 Mar; 99(12):e19538. PubMed ID: 32195958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CT temporal subtraction improves early detection of bone metastases compared to SPECT.
    Onoue K; Nishio M; Yakami M; Aoyama G; Nakagomi K; Iizuka Y; Kubo T; Emoto Y; Akasaka T; Satoh K; Yamamoto H; Isoda H; Togashi K
    Eur Radiol; 2019 Oct; 29(10):5673-5681. PubMed ID: 30888486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of suspected brain infarctions on CT can be significantly improved with temporal subtraction images.
    Akasaka T; Yakami M; Nishio M; Onoue K; Aoyama G; Nakagomi K; Iizuka Y; Kubo T; Emoto Y; Satoh K; Yamamoto H; Togashi K
    Eur Radiol; 2019 Feb; 29(2):759-769. PubMed ID: 30062525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists' diagnostic accuracy.
    Hirose T; Nitta N; Shiraishi J; Nagatani Y; Takahashi M; Murata K
    Acad Radiol; 2008 Dec; 15(12):1505-12. PubMed ID: 19000867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Intelligence Algorithm Detecting Lung Infection in Supine Chest Radiographs of Critically Ill Patients With a Diagnostic Accuracy Similar to Board-Certified Radiologists.
    Rueckel J; Kunz WG; Hoppe BF; Patzig M; Notohamiprodjo M; Meinel FG; Cyran CC; Ingrisch M; Ricke J; Sabel BO
    Crit Care Med; 2020 Jul; 48(7):e574-e583. PubMed ID: 32433121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of a comprehensive brain computed tomography deep learning model on radiologist detection accuracy.
    Buchlak QD; Tang CHM; Seah JCY; Johnson A; Holt X; Bottrell GM; Wardman JB; Samarasinghe G; Dos Santos Pinheiro L; Xia H; Ahmad HK; Pham H; Chiang JI; Ektas N; Milne MR; Chiu CHY; Hachey B; Ryan MK; Johnston BP; Esmaili N; Bennett C; Goldschlager T; Hall J; Vo DT; Oakden-Rayner L; Leveque JC; Farrokhi F; Abramson RG; Jones CM; Edelstein S; Brotchie P
    Eur Radiol; 2024 Feb; 34(2):810-822. PubMed ID: 37606663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of automatic rib fracture detection on chest CT using a deep learning algorithm.
    Wang S; Wu D; Ye L; Chen Z; Zhan Y; Li Y
    Eur Radiol; 2023 Mar; 33(3):1824-1834. PubMed ID: 36214848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based algorithm to detect primary hepatic malignancy in multiphase CT of patients at high risk for HCC.
    Kim DW; Lee G; Kim SY; Ahn G; Lee JG; Lee SS; Kim KW; Park SH; Lee YJ; Kim N
    Eur Radiol; 2021 Sep; 31(9):7047-7057. PubMed ID: 33738600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical usefulness of temporal subtraction CT in detecting vertebral bone metastases.
    Hoshiai S; Masumoto T; Hanaoka S; Nomura Y; Mori K; Hara T; Saida T; Okamoto Y; Minami M
    Eur J Radiol; 2019 Sep; 118():175-180. PubMed ID: 31439238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.