These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35394528)

  • 1. Major niche transitions in Pooideae correlate with variation in photoperiodic flowering and evolution of CCT domain genes.
    Fjellheim S; Young DA; Paliocha M; Johnsen SS; Schubert M; Preston JC
    J Exp Bot; 2022 Jun; 73(12):4079-4093. PubMed ID: 35394528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the miR5200-FLOWERING LOCUS T flowering time regulon in the temperate grass subfamily Pooideae.
    McKeown M; Schubert M; Preston JC; Fjellheim S
    Mol Phylogenet Evol; 2017 Sep; 114():111-121. PubMed ID: 28603035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of VRN2/Ghd7-Like Genes in Vernalization-Mediated Repression of Grass Flowering.
    Woods DP; McKeown MA; Dong Y; Preston JC; Amasino RM
    Plant Physiol; 2016 Apr; 170(4):2124-35. PubMed ID: 26848096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CONSTANS is a photoperiod regulated activator of flowering in sorghum.
    Yang S; Weers BD; Morishige DT; Mullet JE
    BMC Plant Biol; 2014 May; 14():148. PubMed ID: 24884377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PHYTOCHROME C is an essential light receptor for photoperiodic flowering in the temperate grass, Brachypodium distachyon.
    Woods DP; Ream TS; Minevich G; Hobert O; Amasino RM
    Genetics; 2014 Sep; 198(1):397-408. PubMed ID: 25023399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wheat flowering repressor VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR-Y complexes.
    Li C; Distelfeld A; Comis A; Dubcovsky J
    Plant J; 2011 Sep; 67(5):763-73. PubMed ID: 21554456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CCT domain-containing genes in cereal crops: flowering time and beyond.
    Liu H; Zhou X; Li Q; Wang L; Xing Y
    Theor Appl Genet; 2020 May; 133(5):1385-1396. PubMed ID: 32006055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoperiodic flowering: time measurement mechanisms in leaves.
    Song YH; Shim JS; Kinmonth-Schultz HA; Imaizumi T
    Annu Rev Plant Biol; 2015; 66():441-64. PubMed ID: 25534513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of photoperiod and vernalization determines flowering time of Brachypodium distachyon.
    Ream TS; Woods DP; Schwartz CJ; Sanabria CP; Mahoy JA; Walters EM; Kaeppler HF; Amasino RM
    Plant Physiol; 2014 Feb; 164(2):694-709. PubMed ID: 24357601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of flowering in temperate cereals.
    Distelfeld A; Li C; Dubcovsky J
    Curr Opin Plant Biol; 2009 Apr; 12(2):178-84. PubMed ID: 19195924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of Cold Acclimation and Its Role in Niche Transition in the Temperate Grass Subfamily Pooideae.
    Schubert M; Grønvold L; Sandve SR; Hvidsten TR; Fjellheim S
    Plant Physiol; 2019 May; 180(1):404-419. PubMed ID: 30850470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae.
    Cockram J; Thiel T; Steuernagel B; Stein N; Taudien S; Bailey PC; O'Sullivan DM
    PLoS One; 2012; 7(9):e45307. PubMed ID: 23028921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergent roles of FT-like 9 in flowering transition under different day lengths in Brachypodium distachyon.
    Qin Z; Bai Y; Muhammad S; Wu X; Deng P; Wu J; An H; Wu L
    Nat Commun; 2019 Feb; 10(1):812. PubMed ID: 30778068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice.
    Kim SK; Yun CH; Lee JH; Jang YH; Park HY; Kim JK
    Planta; 2008 Jul; 228(2):355-65. PubMed ID: 18449564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT.
    Jin M; Liu X; Jia W; Liu H; Li W; Peng Y; Du Y; Wang Y; Yin Y; Zhang X; Liu Q; Deng M; Li N; Cui X; Hao D; Yan J
    J Integr Plant Biol; 2018 Jun; 60(6):465-480. PubMed ID: 29319223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses.
    Higgins JA; Bailey PC; Laurie DA
    PLoS One; 2010 Apr; 5(4):e10065. PubMed ID: 20419097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar rhythm in the regulation of photoperiodic flowering of long-day and short-day plants.
    Yeang HY
    J Exp Bot; 2013 Jul; 64(10):2643-52. PubMed ID: 23645867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of photoperiodic control pathways produces short-day flowering in rice.
    Hayama R; Yokoi S; Tamaki S; Yano M; Shimamoto K
    Nature; 2003 Apr; 422(6933):719-22. PubMed ID: 12700762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for an Early Origin of Vernalization Responsiveness in Temperate Pooideae Grasses.
    McKeown M; Schubert M; Marcussen T; Fjellheim S; Preston JC
    Plant Physiol; 2016 Sep; 172(1):416-26. PubMed ID: 27474116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum.
    Murphy RL; Klein RR; Morishige DT; Brady JA; Rooney WL; Miller FR; Dugas DV; Klein PE; Mullet JE
    Proc Natl Acad Sci U S A; 2011 Sep; 108(39):16469-74. PubMed ID: 21930910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.