These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 35394647)
1. High-resolution otolith elemental signatures in eteline snappers from valuable deepwater tropical fisheries. Sih TL; Williams AJ; Hu Y; Kingsford MJ J Fish Biol; 2022 Jun; 100(6):1475-1496. PubMed ID: 35394647 [TBL] [Abstract][Full Text] [Related]
2. Beyond the transect: an alternative microchemical imaging method for fine scale analysis of trace elements in fish otoliths during early life. McGowan N; Fowler AM; Parkinson K; Bishop DP; Ganio K; Doble PA; Booth DJ; Hare DJ Sci Total Environ; 2014 Oct; 494-495():177-86. PubMed ID: 25046609 [TBL] [Abstract][Full Text] [Related]
3. Stock discrimination and connectivity assessment of yellowfin seabream ( Wang X; Wang L; Lv S; Li T Saudi J Biol Sci; 2018 Sep; 25(6):1163-1169. PubMed ID: 30174517 [TBL] [Abstract][Full Text] [Related]
4. Trace element-protein interactions in endolymph from the inner ear of fish: implications for environmental reconstructions using fish otolith chemistry. Thomas OR; Ganio K; Roberts BR; Swearer SE Metallomics; 2017 Mar; 9(3):239-249. PubMed ID: 28091665 [TBL] [Abstract][Full Text] [Related]
5. Spatial and temporal variability in the otolith chemistry of the Brazilian snapper Lutjanus alexandrei from estuarine and coastal environments. Aschenbrenner A; Ferreira BP; Rooker JR J Fish Biol; 2016 Jul; 89(1):753-69. PubMed ID: 27255666 [TBL] [Abstract][Full Text] [Related]
6. Within-otolith variability in chemical fingerprints: implications for sampling designs and possible environmental interpretation. Di Franco A; Bulleri F; Pennetta A; De Benedetto G; Clarke KR; Guidetti P PLoS One; 2014; 9(7):e101701. PubMed ID: 25000202 [TBL] [Abstract][Full Text] [Related]
7. Range-Wide Population Structure of 3 Deepwater Eteline Snappers Across the Indo-Pacific Basin. Andrews KR; Copus JM; Wilcox C; Williams AJ; Newman SJ; Wakefield CB; Bowen BW J Hered; 2020 Sep; 111(5):471-485. PubMed ID: 32803261 [TBL] [Abstract][Full Text] [Related]
8. High resolution micromill sampling for analysis of fish otoliths by ICP-MS: effects of sampling and specimen preparation on trace element fingerprints. Arslan Z; Secor DH Mar Environ Res; 2008 Sep; 66(3):364-71. PubMed ID: 18640714 [TBL] [Abstract][Full Text] [Related]
9. Chemistry to conservation: using otoliths to advance recreational and commercial fisheries management. Carlson AK; Phelps QE; Graeb BD J Fish Biol; 2017 Feb; 90(2):505-527. PubMed ID: 27704556 [TBL] [Abstract][Full Text] [Related]
10. Caribbean deepwater snappers: Application of the bomb radiocarbon age estimation validation in understanding aspects of ecology and life history. Overly KE; Shervette VR PLoS One; 2023; 18(12):e0295650. PubMed ID: 38150486 [TBL] [Abstract][Full Text] [Related]
11. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? Sturrock AM; Trueman CN; Darnaude AM; Hunter E J Fish Biol; 2012 Jul; 81(2):766-95. PubMed ID: 22803735 [TBL] [Abstract][Full Text] [Related]
12. The use of otolith chemistry to characterize diadromous migrations. Walther BD; Limburg KE J Fish Biol; 2012 Jul; 81(2):796-825. PubMed ID: 22803736 [TBL] [Abstract][Full Text] [Related]
13. White mullet Mugil curema population structure from Mexico and Brazil revealed by otolith chemistry. Avigliano E; Ibañez A; Fabré N; Callicó Fortunato R; Méndez A; Pisonero J; Volpedo AV J Fish Biol; 2020 Oct; 97(4):1187-1200. PubMed ID: 32799355 [TBL] [Abstract][Full Text] [Related]
14. Documenting utility of paddlefish otoliths for quantification of metals using inductively coupled plasma mass spectrometry. Long JM; Schaffler JJ Rapid Commun Mass Spectrom; 2013 Oct; 27(19):2188-94. PubMed ID: 23996392 [TBL] [Abstract][Full Text] [Related]
16. Asteriscus v. lapillus: comparing the chemistry of two otolith types and their ability to delineate riverine populations of common carp Cyprinus carpio. Macdonald JI; McNeil DG; Crook DA J Fish Biol; 2012 Oct; 81(5):1715-29. PubMed ID: 23020570 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneity of otolith chemical composition from two-dimensional mapping: Relationship with biomineralization mechanisms and implications for microchemistry analyses. de Pontual H; MacKenzie KM; Tabouret H; Daverat F; Mahé K; Pecheyran C; Hüssy K J Fish Biol; 2024 Jan; 104(1):20-33. PubMed ID: 37697461 [TBL] [Abstract][Full Text] [Related]
18. Otolith chemical fingerprints of skipjack tuna (Katsuwonus pelamis) in the Indian Ocean: First insights into stock structure delineation. Artetxe-Arrate I; Fraile I; Farley J; Darnaude AM; Clear N; Rodríguez-Ezpeleta N; Dettman DL; Pécheyran C; Krug I; Médieu A; Ahusan M; Proctor C; Priatna A; Lestari P; Davies C; Marsac F; Murua H PLoS One; 2021; 16(3):e0249327. PubMed ID: 33780495 [TBL] [Abstract][Full Text] [Related]
19. Comparative age-specific demography of four commercially important deep-water snappers: implication for fishery management of a long-lived lutjanid. Uehara M; Ebisawa A; Ohta I J Fish Biol; 2020 Jul; 97(1):121-136. PubMed ID: 32232856 [TBL] [Abstract][Full Text] [Related]
20. Etelis boweni sp. nov., a new cryptic deepwater eteline snapper from the Indo-Pacific (Perciformes: Lutjanidae). Andrews KR; Fernandez-Silva I; Randall JE; Ho HC J Fish Biol; 2021 Aug; 99(2):335-344. PubMed ID: 33751562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]