These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35394759)

  • 1. New Perspectives for Developing Therapeutic Bioconjugates of Metabolite-Depleting Enzymes: Lessons Learned Combating Glutamate Excitotoxicity.
    Zaghmi A; Pérez-Mato M; Dopico-López A; Candamo-Lourido M; Campos F; Gauthier MA
    Biomacromolecules; 2022 May; 23(5):1864-1872. PubMed ID: 35394759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.
    Levite M
    J Neural Transm (Vienna); 2014 Aug; 121(8):1029-75. PubMed ID: 25081016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple sclerosis and glutamate excitotoxicity.
    Kostic M; Zivkovic N; Stojanovic I
    Rev Neurosci; 2013; 24(1):71-88. PubMed ID: 23152401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of glutamate and its receptors in multiple sclerosis.
    Stojanovic IR; Kostic M; Ljubisavljevic S
    J Neural Transm (Vienna); 2014 Aug; 121(8):945-55. PubMed ID: 24633998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate, T cells and multiple sclerosis.
    Levite M
    J Neural Transm (Vienna); 2017 Jul; 124(7):775-798. PubMed ID: 28236206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms of ischemia and glutamate excitotoxicity.
    Neves D; Salazar IL; Almeida RD; Silva RM
    Life Sci; 2023 Sep; 328():121814. PubMed ID: 37236602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alzheimer's Disease: Recent Concepts on the Relation of Mitochondrial Disturbances, Excitotoxicity, Neuroinflammation, and Kynurenines.
    Zádori D; Veres G; Szalárdy L; Klivényi P; Vécsei L
    J Alzheimers Dis; 2018; 62(2):523-547. PubMed ID: 29480191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotransmitters in the mediation of cerebral ischemic injury.
    Mayor D; Tymianski M
    Neuropharmacology; 2018 May; 134(Pt B):178-188. PubMed ID: 29203179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: Therapeutic implications.
    Olloquequi J; Cornejo-Córdova E; Verdaguer E; Soriano FX; Binvignat O; Auladell C; Camins A
    J Psychopharmacol; 2018 Mar; 32(3):265-275. PubMed ID: 29444621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamate uptake.
    Danbolt NC
    Prog Neurobiol; 2001 Sep; 65(1):1-105. PubMed ID: 11369436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Role of glutamate and excitotoxicity in neurologic diseases].
    Hugon J; Vallat JM; Dumas M
    Rev Neurol (Paris); 1996 Apr; 152(4):239-48. PubMed ID: 8763652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitotoxicity: bridge to various triggers in neurodegenerative disorders.
    Mehta A; Prabhakar M; Kumar P; Deshmukh R; Sharma PL
    Eur J Pharmacol; 2013 Jan; 698(1-3):6-18. PubMed ID: 23123057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Questioning Glutamate Excitotoxicity in Acute Brain Damage: The Importance of Spreading Depolarization.
    Andrew RD; Farkas E; Hartings JA; Brennan KC; Herreras O; Müller M; Kirov SA; Ayata C; Ollen-Bittle N; Reiffurth C; Revah O; Robertson RM; Dawson-Scully KD; Ullah G; Dreier JP
    Neurocrit Care; 2022 Jun; 37(Suppl 1):11-30. PubMed ID: 35194729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and cellular mechanism of glutamate receptors in relation to amyotrophic lateral sclerosis.
    Iwasaki Y; Ikeda K; Kinoshita M
    Curr Drug Targets CNS Neurol Disord; 2002 Oct; 1(5):511-8. PubMed ID: 12769603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond the role of glutamate as a neurotransmitter.
    Nedergaard M; Takano T; Hansen AJ
    Nat Rev Neurosci; 2002 Sep; 3(9):748-55. PubMed ID: 12209123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate receptors, neurotoxicity and neurodegeneration.
    Lau A; Tymianski M
    Pflugers Arch; 2010 Jul; 460(2):525-42. PubMed ID: 20229265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Glutamate Neurotoxicity through Dietary Manipulation: Potential Treatment for Migraine.
    Martami F; Holton KF
    Nutrients; 2023 Sep; 15(18):. PubMed ID: 37764736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Glutamate, glutamine and ischaemia in the central nervous system].
    Boulland JL; Levy LM
    Tidsskr Nor Laegeforen; 2005 Jun; 125(11):1479-81. PubMed ID: 15940312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitotoxicity in perinatal brain injury.
    Johnston MV
    Brain Pathol; 2005 Jul; 15(3):234-40. PubMed ID: 16196390
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.