These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35395125)

  • 21. Identification and functional prediction of long non-coding RNAs of rice (Oryza sativa L.) at reproductive stage under salinity stress.
    Jain P; Hussian S; Nishad J; Dubey H; Bisht DS; Sharma TR; Mondal TK
    Mol Biol Rep; 2021 Mar; 48(3):2261-2271. PubMed ID: 33742326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential Regulation of Genes Involved in Root Morphogenesis and Cell Wall Modification is Associated with Salinity Tolerance in Chickpea.
    Kaashyap M; Ford R; Kudapa H; Jain M; Edwards D; Varshney R; Mantri N
    Sci Rep; 2018 Mar; 8(1):4855. PubMed ID: 29555923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress and re-watering.
    Tan X; Li S; Hu L; Zhang C
    BMC Plant Biol; 2020 Feb; 20(1):81. PubMed ID: 32075594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.).
    Sharma KD; Nayyar H
    BMC Res Notes; 2014 Oct; 7():717. PubMed ID: 25306382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide analysis suggests the potential role of lncRNAs during seed development and seed size/weight determination in chickpea.
    Khemka N; Rajkumar MS; Garg R; Jain M
    Planta; 2022 Sep; 256(4):79. PubMed ID: 36094579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative Root Transcriptomics Provide Insights into Drought Adaptation Strategies in Chickpea (
    Bhaskarla V; Zinta G; Ford R; Jain M; Varshney RK; Mantri N
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32150870
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous salt stress-induced long non-coding RNAs and DNA methylation patterns in soybean roots.
    Chen R; Li M; Zhang H; Duan L; Sun X; Jiang Q; Zhang H; Hu Z
    BMC Genomics; 2019 Oct; 20(1):730. PubMed ID: 31606033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress.
    Deng F; Zhang X; Wang W; Yuan R; Shen F
    BMC Plant Biol; 2018 Jan; 18(1):23. PubMed ID: 29370759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes.
    Peng Z; He S; Gong W; Sun J; Pan Z; Xu F; Lu Y; Du X
    BMC Genomics; 2014 Sep; 15(1):760. PubMed ID: 25189468
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated transcriptome, small RNA and degradome sequencing approaches provide insights into Ascochyta blight resistance in chickpea.
    Garg V; Khan AW; Kudapa H; Kale SM; Chitikineni A; Qiwei S; Sharma M; Li C; Zhang B; Xin L; Kishor PBK; Varshney RK
    Plant Biotechnol J; 2019 May; 17(5):914-931. PubMed ID: 30328278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.).
    Mahdavi Mashaki K; Garg V; Nasrollahnezhad Ghomi AA; Kudapa H; Chitikineni A; Zaynali Nezhad K; Yamchi A; Soltanloo H; Varshney RK; Thudi M
    PLoS One; 2018; 13(6):e0199774. PubMed ID: 29953498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization.
    Csorba T; Questa JI; Sun Q; Dean C
    Proc Natl Acad Sci U S A; 2014 Nov; 111(45):16160-5. PubMed ID: 25349421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stress-responsive regulation of long non-coding RNA polyadenylation in Oryza sativa.
    Yuan J; Li J; Yang Y; Tan C; Zhu Y; Hu L; Qi Y; Lu ZJ
    Plant J; 2018 Mar; 93(5):814-827. PubMed ID: 29265542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-molecule real-time transcript sequencing identified flowering regulatory genes in Crocus sativus.
    Qian X; Sun Y; Zhou G; Yuan Y; Li J; Huang H; Xu L; Li L
    BMC Genomics; 2019 Nov; 20(1):857. PubMed ID: 31726972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery of DNA polymorphisms via whole genome resequencing and their functional relevance in salinity stress response in chickpea.
    Rajkumar MS; Jain M; Garg R
    Physiol Plant; 2021 Dec; 173(4):1573-1586. PubMed ID: 34287918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic and expression analysis indicate the involvement of phospholipase C family in abiotic stress signaling in chickpea (Cicer arietinum).
    Sagar S; Biswas DK; Singh A
    Gene; 2020 Aug; 753():144797. PubMed ID: 32454180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MicroRNA profiling provides insights into post-transcriptional regulation of gene expression in chickpea root apex under salinity and water deficiency.
    Khandal H; Parween S; Roy R; Meena MK; Chattopadhyay D
    Sci Rep; 2017 Jul; 7(1):4632. PubMed ID: 28680071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comprehensive transcriptome assembly of Chickpea (Cicer arietinum L.) using sanger and next generation sequencing platforms: development and applications.
    Kudapa H; Azam S; Sharpe AG; Taran B; Li R; Deonovic B; Cameron C; Farmer AD; Cannon SB; Varshney RK
    PLoS One; 2014; 9(1):e86039. PubMed ID: 24465857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of differentially expressed genes in salt-tolerant oilseed sunflower (Helianthus annuus L.) genotype by RNA sequencing.
    Sharifi Alishah M; Darvishzadeh R; Ahmadabadi M; Piri Kashtiban Y; Hasanpur K
    Mol Biol Rep; 2022 May; 49(5):3583-3596. PubMed ID: 35119610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional profiling of two contrasting genotypes uncovers molecular mechanisms underlying salt tolerance in alfalfa.
    Kaundal R; Duhan N; Acharya BR; Pudussery MV; Ferreira JFS; Suarez DL; Sandhu D
    Sci Rep; 2021 Mar; 11(1):5210. PubMed ID: 33664362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.