These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35395198)

  • 1. Mapping replication forks, one replicon at a time.
    Rhind N
    Mol Cell; 2022 Apr; 82(7):1246-1248. PubMed ID: 35395198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replicon-seq: seeing is believing.
    Polo Rivera C; Deegan TD
    Trends Genet; 2022 Oct; 38(10):987-988. PubMed ID: 35643778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation.
    Doksani Y; Bermejo R; Fiorani S; Haber JE; Foiani M
    Cell; 2009 Apr; 137(2):247-58. PubMed ID: 19361851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication fork stalling by bulky DNA damage: localization at active origins and checkpoint modulation.
    Minca EC; Kowalski D
    Nucleic Acids Res; 2011 Apr; 39(7):2610-23. PubMed ID: 21138968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replication fork barriers in the Xenopus rDNA.
    Wiesendanger B; Lucchini R; Koller T; Sogo JM
    Nucleic Acids Res; 1994 Nov; 22(23):5038-46. PubMed ID: 7800497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replicon size and rate of DNA replication fork movement are correlated in grasses.
    Kidd AD; Francis D; Bennett MD
    Exp Cell Res; 1989 Sep; 184(1):262-7. PubMed ID: 2792227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replisome assembly and the direct restart of stalled replication forks.
    Heller RC; Marians KJ
    Nat Rev Mol Cell Biol; 2006 Dec; 7(12):932-43. PubMed ID: 17139333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication initiation sites are distributed widely in the amplified CHO dihydrofolate reductase domain.
    Dijkwel PA; Vaughn JP; Hamlin JL
    Nucleic Acids Res; 1994 Nov; 22(23):4989-96. PubMed ID: 7800491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Cell Analysis of Histone Acetylation Dynamics at Replication Forks Using PLA and SIRF.
    Lee SY; Kim JJ; Miller KM
    Methods Mol Biol; 2023; 2589():345-360. PubMed ID: 36255636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replication-associated strand asymmetries in vertebrate genomes and implications for replicon size, DNA replication origin, and termination.
    Hou WR; Wang HF; Niu DK
    Biochem Biophys Res Commun; 2006 Jun; 344(4):1258-62. PubMed ID: 16650814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replication mechanism and sequence analysis of the replicon of pAW63, a conjugative plasmid from Bacillus thuringiensis.
    Wilcks A; Smidt L; Okstad OA; Kolsto AB; Mahillon J; Andrup L
    J Bacteriol; 1999 May; 181(10):3193-200. PubMed ID: 10322022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boundaries of the pSC101 minimal replicon are conditional.
    Miller CA; Ingmer H; Cohen SN
    J Bacteriol; 1995 Sep; 177(17):4865-71. PubMed ID: 7665462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density transfer as a method to analyze the progression of DNA replication forks.
    Tercero JA
    Methods Mol Biol; 2009; 521():203-13. PubMed ID: 19563108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dormant origins and fork protection mechanisms rescue sister forks arrested by transcription.
    Brambati A; Zardoni L; Achar YJ; Piccini D; Galanti L; Colosio A; Foiani M; Liberi G
    Nucleic Acids Res; 2018 Feb; 46(3):1227-1239. PubMed ID: 29059325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite patterns in neutral/neutral two-dimensional gels demonstrate inefficient replication origin usage.
    Kalejta RF; Hamlin JL
    Mol Cell Biol; 1996 Sep; 16(9):4915-22. PubMed ID: 8756650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA replication in phage P4: characterization of replicon II.
    Magnoni F; Sala C; Forti F; Dehò G; Ghisotti D
    Plasmid; 2006 Nov; 56(3):216-22. PubMed ID: 16908062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The interrelation between changes in the structural organization of replicon clusters, a retarded fork displacement rate and the high level of spontaneous SCEs in form II of xeroderma pigmentosum].
    Barenfel'd LS; Nergadze SG; Pleskach NM; Mikhel'son VM
    Tsitologiia; 1992; 34(6):88-94. PubMed ID: 1455562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Molecule Dynamics at a Bacterial Replication Fork after Nutritional Downshift or Chemically Induced Block in Replication.
    Hernández-Tamayo R; Schmitz H; Graumann PL
    mSphere; 2021 Jan; 6(1):. PubMed ID: 33504660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RADX prevents genome instability by confining replication fork reversal to stalled forks.
    Krishnamoorthy A; Jackson J; Mohamed T; Adolph M; Vindigni A; Cortez D
    Mol Cell; 2021 Jul; 81(14):3007-3017.e5. PubMed ID: 34107305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WRNIP1 protects stalled forks from degradation and promotes fork restart after replication stress.
    Leuzzi G; Marabitti V; Pichierri P; Franchitto A
    EMBO J; 2016 Jul; 35(13):1437-51. PubMed ID: 27242363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.