These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35395442)

  • 1. Aquifer remediation using surfactant-enhanced gas sparging applied to target the contaminant source.
    Cho MY; Oh MS; Annable MD; Kim H
    J Contam Hydrol; 2022 Jun; 248():104002. PubMed ID: 35395442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments.
    Kim H; Ahn D; Annable MD
    J Contam Hydrol; 2016 Jan; 184():25-34. PubMed ID: 26697745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced air sparging.
    Choi JK; Kim H; Kwon H; Annable MD
    J Contam Hydrol; 2018 Mar; 210():42-49. PubMed ID: 29502850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant-enhanced ozone sparging for removal of organic compounds from sand.
    Kim H; Yang S; Yang H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(5):526-33. PubMed ID: 23383638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remediation of NAPL-contaminated porous media using micro-nano ozone bubbles: Bench-scale experiments.
    Kwon H; Mohamed MM; Annable MD; Kim H
    J Contam Hydrol; 2020 Jan; 228():103563. PubMed ID: 31761389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the effects of alcohol-enhanced air sparging remediation in a benzene-contaminated aquifer: a new insight.
    Chang Y; Yao M; Bai J; Zhao Y
    Environ Sci Pollut Res Int; 2019 Dec; 26(34):35140-35150. PubMed ID: 31686334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory evaluation of surfactant-enhanced air sparging for perchloroethene source mass depletion from sand.
    Kim H; Annable MD; Rao PS; Cho J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Mar; 44(4):406-13. PubMed ID: 19184708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.
    Kim J; Kim H; Annable MD
    J Contam Hydrol; 2015 Jan; 172():1-9. PubMed ID: 25462638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced air sparging for groundwater remediation using alginate gel-based removable hydraulic barriers.
    Oh MS; Namgung G; Kim H
    J Contam Hydrol; 2024 Jan; 260():104258. PubMed ID: 38064800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of in situ air sparging for removing NAPL gasoline from a sandy aquifer near Perth, Western Australia.
    Johnston CD; Rayner JL; Briegel D
    J Contam Hydrol; 2002 Nov; 59(1-2):87-111. PubMed ID: 12683641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced removal of NAPL constituent from aquifer during surfactant flushing with aqueous hydraulic barriers of high viscosity.
    Ahn D; Choi JK; Kim H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jun; 52(7):590-597. PubMed ID: 28281884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence zone of surfactant-enhanced air sparging in different media.
    Chuan-Yu Q; Yong-Sheng Z; Wei Z
    Environ Technol; 2014; 35(9-12):1190-8. PubMed ID: 24701915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Larger aggregate formed by self-assembly process of the mixture surfactants enhance the dissolution and oxidative removal of non-aqueous phase liquid contaminants in aquifer.
    Wei KH; Zheng YM; Sun Y; Zhao ZQ; Xi BD; He XS
    Sci Total Environ; 2024 Feb; 912():169532. PubMed ID: 38145683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in air saturation and air-water interfacial area during surfactant-enhanced air sparging in saturated sand.
    Kim H; Choi KM; Moon JW; Annable MD
    J Contam Hydrol; 2006 Nov; 88(1-2):23-35. PubMed ID: 16872716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporary hydraulic barriers using organic gel for enhanced aquifer remediation during groundwater flushing: Bench-scale experiments.
    Oh MS; Annable MD; Kim H
    J Contam Hydrol; 2023 Apr; 255():104143. PubMed ID: 36773413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remediation of nonaqueous phase liquid polluted sites using surfactant-enhanced air sparging and soil vapor extraction.
    Qin CY; Zhao YS; Su Y; Zheng W
    Water Environ Res; 2013 Feb; 85(2):133-40. PubMed ID: 23472329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study on the groundwater petroleum contaminant remediation by air sparging].
    Wang ZQ; Wu Q; Zou ZG; Chen H; Yang XC; Zhao JC
    Huan Jing Ke Xue; 2007 Apr; 28(4):754-60. PubMed ID: 17639932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Groundwater remediation engineering sparging using acetylene--study on the flow distribution of air.
    Zheng YM; Zhang Y; Huang GQ; Jiang B; Li XG
    J Environ Sci (China); 2005; 17(3):437-9. PubMed ID: 16083119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ozone-encapsulated colloidal gas aphrons for in situ and targeting remediation of phenanthrene-contaminated sediment-aquifer.
    Zhang M; Feng Y; Zhang D; Dong L; Pan X
    Water Res; 2019 Sep; 160():29-38. PubMed ID: 31129379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remediation characteristics of surfactant-enhanced air sparging (SEAS) technology on volatile organic compounds contaminated soil with low permeability.
    Xu L; Yan L; Zha F; Zhu F; Tan X; Kang B; Yang C; Lin Z
    J Contam Hydrol; 2022 Oct; 250():104049. PubMed ID: 35863213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.