BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35395476)

  • 1. DFT investigation on the carbonate radical formation in the system containing carbon dioxide and hydroxyl free radical.
    Lan X; Dai Y; Jing W; Meng X; Liu F; Wang S; He A; Li N
    J Mol Graph Model; 2022 Jul; 114():108182. PubMed ID: 35395476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Mechanism of Lipid Peroxidation Induced by Carbonate Radicals.
    Cao H; Xiong SF; Dong LL; Dai ZT
    Molecules; 2024 Mar; 29(5):. PubMed ID: 38474637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of fenuron degradation by hydroxyl and carbonate radicals in aqueous solution.
    Mazellier P; Busset C; Delmont A; De Laat J
    Water Res; 2007 Dec; 41(20):4585-94. PubMed ID: 17675205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemibonding of hydroxyl radical and halide anion in aqueous solution.
    Yamaguchi M
    J Phys Chem A; 2011 Dec; 115(51):14620-8. PubMed ID: 22136588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism and kinetics of the oxidation of dimethyl carbonate by hydroxyl radical in the atmosphere.
    Gnanaprakasam M; Sandhiya L; Senthilkumar K
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3357-3367. PubMed ID: 30511221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Effect of Aqueous Solution in Water-Assisted Proton-Transfer Mechanism of 8-Hydroxy Guanine Radical.
    Liu P; Li C; Wang S; Wang D
    J Phys Chem B; 2018 Mar; 122(12):3124-3132. PubMed ID: 29518332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic insights into the dissociation and decomposition of carbonic acid in water via the hydroxide route: an ab initio metadynamics study.
    Galib M; Hanna G
    J Phys Chem B; 2011 Dec; 115(50):15024-35. PubMed ID: 22053746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions: experimental and theoretical studies.
    Minakata D; Song W; Crittenden J
    Environ Sci Technol; 2011 Jul; 45(14):6057-65. PubMed ID: 21688853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The intrinsic mechanism of catalytic oxidation of arsenite by hydroxyl-radicals in the H
    Masliy AN; Kuznetsov AM; Korshin GV
    Chemosphere; 2020 Jan; 238():124466. PubMed ID: 31425866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum mechanical investigation of the inner-sphere reorganization energy of cyclooctatetraene/cyclooctatetraene radical anion. Part I.
    Kelterer AM; Landgraf S; Grampp G
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Sep; 57(10):1959-69. PubMed ID: 11666076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Study of the pH-Dependent Competition between Carbonate and Thymine Addition to the Guanine Radical.
    Hebert SP; Schlegel HB
    Chem Res Toxicol; 2019 Jan; 32(1):195-210. PubMed ID: 30592213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of OH Radical-Initiated H2CO3 Degradation in the Earth's Atmosphere via Proton-Coupled Electron Transfer Mechanism.
    Ghoshal S; Hazra MK
    J Phys Chem A; 2016 Feb; 120(4):562-75. PubMed ID: 26731551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutagenic product formation due to reaction of guanine radical cation with nitrogen dioxide.
    Agnihotri N; Mishra PC
    J Phys Chem B; 2009 Mar; 113(10):3129-38. PubMed ID: 19708266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFT Study on the Formation Mechanism of Normal and Abnormal N-Heterocyclic Carbene-Carbon Dioxide Adducts from the Reaction of an Imidazolium-Based Ionic Liquid with CO
    Dong M; Gao J; Liu C; Zhang D
    J Phys Chem B; 2017 Nov; 121(44):10276-10284. PubMed ID: 29023120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H2CO3(s): a new candidate for CO2 capture and sequestration.
    Tossell JA
    Environ Sci Technol; 2009 Apr; 43(7):2575-80. PubMed ID: 19452919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity of 2',7'-dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals.
    Wrona M; Patel K; Wardman P
    Free Radic Biol Med; 2005 Jan; 38(2):262-70. PubMed ID: 15607909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio molecular dynamics study of carbon dioxide and bicarbonate hydration and the nucleophilic attack of hydroxide on CO2.
    Leung K; Nielsen IM; Kurtz I
    J Phys Chem B; 2007 May; 111(17):4453-9. PubMed ID: 17408252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free radical degradation in aqueous solution by blowing hydrogen and carbon dioxide nanobubbles.
    Fujita T; Kurokawa H; Han Z; Zhou Y; Matsui H; Ponou J; Dodbiba G; He C; Wei Y
    Sci Rep; 2021 Feb; 11(1):3068. PubMed ID: 33542381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the activity of glutathione as a hydroxyl radical scavenger considering its neutral non-zwitterionic form.
    Yadav A; Mishra PC
    J Mol Model; 2013 Feb; 19(2):767-77. PubMed ID: 23053011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.