These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35395889)

  • 1. Estimation of binding rates and affinities from multiensemble Markov models and ligand decoupling.
    Ge Y; Voelz VA
    J Chem Phys; 2022 Apr; 156(13):134115. PubMed ID: 35395889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiensemble Markov models of molecular thermodynamics and kinetics.
    Wu H; Paul F; Wehmeyer C; Noé F
    Proc Natl Acad Sci U S A; 2016 Jun; 113(23):E3221-30. PubMed ID: 27226302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of ligand dissociation kinetics from the protein kinase PYK2.
    Spiriti J; Noé F; Wong CF
    J Comput Chem; 2022 Oct; 43(28):1911-1922. PubMed ID: 36073605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The SAMPL6 SAMPLing challenge: assessing the reliability and efficiency of binding free energy calculations.
    Rizzi A; Jensen T; Slochower DR; Aldeghi M; Gapsys V; Ntekoumes D; Bosisio S; Papadourakis M; Henriksen NM; de Groot BL; Cournia Z; Dickson A; Michel J; Gilson MK; Shirts MR; Mobley DL; Chodera JD
    J Comput Aided Mol Des; 2020 May; 34(5):601-633. PubMed ID: 31984465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting ligand binding affinity using on- and off-rates for the SAMPL6 SAMPLing challenge.
    Dixon T; Lotz SD; Dickson A
    J Comput Aided Mol Des; 2018 Oct; 32(10):1001-1012. PubMed ID: 30141102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution-State Preorganization of Cyclic β-Hairpin Ligands Determines Binding Mechanism and Affinities for MDM2.
    Ge Y; Zhang S; Erdelyi M; Voelz VA
    J Chem Inf Model; 2021 May; 61(5):2353-2367. PubMed ID: 33905247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient strategy to estimate thermodynamics and kinetics of G protein-coupled receptor activation using metadynamics and maximum caliber.
    Meral D; Provasi D; Filizola M
    J Chem Phys; 2018 Dec; 149(22):224101. PubMed ID: 30553249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand Release Pathways Obtained with WExplore: Residence Times and Mechanisms.
    Dickson A; Lotz SD
    J Phys Chem B; 2016 Jun; 120(24):5377-85. PubMed ID: 27231969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-Ligand Electrostatic Binding Free Energies from Explicit and Implicit Solvation.
    Izadi S; Aguilar B; Onufriev AV
    J Chem Theory Comput; 2015 Sep; 11(9):4450-9. PubMed ID: 26575935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variational implicit-solvent predictions of the dry-wet transition pathways for ligand-receptor binding and unbinding kinetics.
    Zhou S; Weiß RG; Cheng LT; Dzubiella J; McCammon JA; Li B
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):14989-14994. PubMed ID: 31270236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent.
    Li P; Roberts BP; Chakravorty DK; Merz KM
    J Chem Theory Comput; 2013 Jun; 9(6):2733-2748. PubMed ID: 23914143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational populations of ligand-sized molecules by replica exchange molecular dynamics and temperature reweighting.
    Okumura H; Gallicchio E; Levy RM
    J Comput Chem; 2010 May; 31(7):1357-67. PubMed ID: 19882731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand Gaussian Accelerated Molecular Dynamics 2 (LiGaMD2): Improved Calculations of Ligand Binding Thermodynamics and Kinetics with Closed Protein Pocket.
    Wang J; Miao Y
    J Chem Theory Comput; 2023 Feb; 19(3):733-745. PubMed ID: 36706316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attach-Pull-Release Calculations of Ligand Binding and Conformational Changes on the First BRD4 Bromodomain.
    Heinzelmann G; Henriksen NM; Gilson MK
    J Chem Theory Comput; 2017 Jul; 13(7):3260-3275. PubMed ID: 28564537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand Binding Free Energies with Adaptive Water Networks: Two-Dimensional Grand Canonical Alchemical Perturbations.
    Bruce Macdonald HE; Cave-Ayland C; Ross GA; Essex JW
    J Chem Theory Comput; 2018 Dec; 14(12):6586-6597. PubMed ID: 30451501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Histogram Analysis To Determine Free Energies and Rates from Biased Simulations.
    Stelzl LS; Kells A; Rosta E; Hummer G
    J Chem Theory Comput; 2017 Dec; 13(12):6328-6342. PubMed ID: 29059525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of relative free energies of binding using pre-computed ensembles based on the single-step free energy perturbation and the site-identification by Ligand competitive saturation approaches.
    Raman EP; Lakkaraju SK; Denny RA; MacKerell AD
    J Comput Chem; 2017 Jun; 38(15):1238-1251. PubMed ID: 27782307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent's Role in Cavity-Ligand Recognition Would Depend on the Mode of Ligand Diffusion.
    Bandyopadhyay S; Majumdar BB; Mondal J
    J Phys Chem B; 2022 Apr; 126(16):2952-2958. PubMed ID: 35436126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Steered Molecular Dynamics Approach to Computing Absolute Binding Free Energy of Ligand-Protein Complexes: A Brute Force Approach That Is Fast and Accurate.
    Chen LY
    J Chem Theory Comput; 2015 Apr; 11(4):1928-38. PubMed ID: 25937822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics.
    Yin J; Fenley AT; Henriksen NM; Gilson MK
    J Phys Chem B; 2015 Aug; 119(32):10145-55. PubMed ID: 26181208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.