These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 35395901)
1. Generalized master equation for charge transport in a molecular junction: Exact memory kernels and their high order expansion. Dan X; Xu M; Yan Y; Shi Q J Chem Phys; 2022 Apr; 156(13):134114. PubMed ID: 35395901 [TBL] [Abstract][Full Text] [Related]
2. Convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation and rate constants: Case study of the spin-boson model. Xu M; Yan Y; Liu Y; Shi Q J Chem Phys; 2018 Apr; 148(16):164101. PubMed ID: 29716231 [TBL] [Abstract][Full Text] [Related]
3. Resummed memory kernels in generalized system-bath master equations. Mavros MG; Van Voorhis T J Chem Phys; 2014 Aug; 141(5):054112. PubMed ID: 25106575 [TBL] [Abstract][Full Text] [Related]
4. Theoretical study of charge carrier transport in organic molecular crystals using the Nakajima-Zwanzig-Mori generalized master equation. Yan Y; Xu M; Liu Y; Shi Q J Chem Phys; 2019 Jun; 150(23):234101. PubMed ID: 31228885 [TBL] [Abstract][Full Text] [Related]
5. Hierarchical Equations of Motion for Quantum Chemical Dynamics: Recent Methodology Developments and Applications. Bai S; Zhang S; Huang C; Shi Q Acc Chem Res; 2024 Nov; 57(21):3151-3160. PubMed ID: 39381954 [TBL] [Abstract][Full Text] [Related]
6. Kinetic Rate Kernels via Hierarchical Liouville-Space Projection Operator Approach. Zhang HD; Yan Y J Phys Chem A; 2016 May; 120(19):3241-5. PubMed ID: 26757138 [TBL] [Abstract][Full Text] [Related]
7. Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics. Montoya-Castillo A; Reichman DR J Chem Phys; 2016 May; 144(18):184104. PubMed ID: 27179468 [TBL] [Abstract][Full Text] [Related]
8. Numerically "exact" approach to open quantum dynamics: The hierarchical equations of motion (HEOM). Tanimura Y J Chem Phys; 2020 Jul; 153(2):020901. PubMed ID: 32668942 [TBL] [Abstract][Full Text] [Related]
9. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model. Kidon L; Wilner EY; Rabani E J Chem Phys; 2015 Dec; 143(23):234110. PubMed ID: 26696049 [TBL] [Abstract][Full Text] [Related]
10. Convergence of high order perturbative expansions in open system quantum dynamics. Xu M; Song L; Song K; Shi Q J Chem Phys; 2017 Feb; 146(6):064102. PubMed ID: 28201895 [TBL] [Abstract][Full Text] [Related]
11. A semiclassical generalized quantum master equation for an arbitrary system-bath coupling. Shi Q; Geva E J Chem Phys; 2004 Jun; 120(22):10647-58. PubMed ID: 15268091 [TBL] [Abstract][Full Text] [Related]
12. Exciton transfer using rates extracted from the "hierarchical equations of motion". Seibt J; Kühn O J Chem Phys; 2020 Nov; 153(19):194112. PubMed ID: 33218227 [TBL] [Abstract][Full Text] [Related]
13. A simple improved low temperature correction for the hierarchical equations of motion. Fay TP J Chem Phys; 2022 Aug; 157(5):054108. PubMed ID: 35933192 [TBL] [Abstract][Full Text] [Related]
14. Two-dimensional electronic spectra from the hierarchical equations of motion method: Application to model dimers. Chen L; Zheng R; Shi Q; Yan Y J Chem Phys; 2010 Jan; 132(2):024505. PubMed ID: 20095685 [TBL] [Abstract][Full Text] [Related]
15. Integrative generalized master equation: A method to study long-timescale biomolecular dynamics via the integrals of memory kernels. Cao S; Qiu Y; Kalin ML; Huang X J Chem Phys; 2023 Oct; 159(13):. PubMed ID: 37787134 [TBL] [Abstract][Full Text] [Related]
16. Subdynamics of fluctuations in an equilibrium classical many-particle system and generalized linear Boltzmann and Landau equations. Los VF Phys Rev E; 2020 Nov; 102(5-1):052136. PubMed ID: 33327200 [TBL] [Abstract][Full Text] [Related]
17. From Liouville to Landauer: Electron transport and the bath assumptions made along the way. Bialas D; Jorn R J Chem Phys; 2024 May; 160(18):. PubMed ID: 38721907 [TBL] [Abstract][Full Text] [Related]
18. Approximate but accurate quantum dynamics from the Mori formalism. II. Equilibrium time correlation functions. Montoya-Castillo A; Reichman DR J Chem Phys; 2017 Feb; 146(8):084110. PubMed ID: 28249417 [TBL] [Abstract][Full Text] [Related]
19. A modified approach for simulating electronically nonadiabatic dynamics via the generalized quantum master equation. Mulvihill E; Schubert A; Sun X; Dunietz BD; Geva E J Chem Phys; 2019 Jan; 150(3):034101. PubMed ID: 30660163 [TBL] [Abstract][Full Text] [Related]
20. Nonequilibrium quantum dynamics in the condensed phase via the generalized quantum master equation. Zhang ML; Ka BJ; Geva E J Chem Phys; 2006 Jul; 125(4):44106. PubMed ID: 16942133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]