These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35396246)

  • 1. Resampling to address inequities in predictive modeling of suicide deaths.
    Reeves M; Bhat HS; Goldman-Mellor S
    BMJ Health Care Inform; 2022 Apr; 29(1):. PubMed ID: 35396246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Multiprognostic Index Domain Scores, Clinical Data, and Machine Learning to Improve 12-Month Mortality Risk Prediction in Older Hospitalized Patients: Prospective Cohort Study.
    Woodman RJ; Bryant K; Sorich MJ; Pilotto A; Mangoni AA
    J Med Internet Res; 2021 Jun; 23(6):e26139. PubMed ID: 34152274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Racial Equity in Healthcare Machine Learning: Illustrating Bias in Models With Minimal Bias Mitigation.
    Barton M; Hamza M; Guevel B
    Cureus; 2023 Feb; 15(2):e35037. PubMed ID: 36942183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the risk of diabetes complications using machine learning and social administrative data in a country with ethnic inequities in health: Aotearoa New Zealand.
    Nghiem N; Wilson N; Krebs J; Tran T
    BMC Med Inform Decis Mak; 2024 Sep; 24(1):274. PubMed ID: 39334279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting death by suicide using administrative health care system data: Can recurrent neural network, one-dimensional convolutional neural network, and gradient boosted trees models improve prediction performance?
    Sanderson M; Bulloch AG; Wang J; Williamson T; Patten SB
    J Affect Disord; 2020 Mar; 264():107-114. PubMed ID: 32056739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction models of suicide and non-fatal suicide attempt after discharge from a psychiatric inpatient stay: A machine learning approach on nationwide Danish registers.
    Nielsen SD; Christensen RHB; Madsen T; Karstoft KI; Clemmensen L; Benros ME
    Acta Psychiatr Scand; 2023 Dec; 148(6):525-537. PubMed ID: 37961014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergency department triage prediction of clinical outcomes using machine learning models.
    Raita Y; Goto T; Faridi MK; Brown DFM; Camargo CA; Hasegawa K
    Crit Care; 2019 Feb; 23(1):64. PubMed ID: 30795786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suicide risk classification with machine learning techniques in a large Brazilian community sample.
    Roza TH; Seibel GS; Recamonde-Mendoza M; Lotufo PA; BenseƱor IM; Passos IC; Brunoni AR
    Psychiatry Res; 2023 Jul; 325():115258. PubMed ID: 37263086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical risk prediction models and informative cluster size: Assessing the performance of a suicide risk prediction algorithm.
    Coley RY; Walker RL; Cruz M; Simon GE; Shortreed SM
    Biom J; 2021 Oct; 63(7):1375-1388. PubMed ID: 34031916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing regression, naive Bayes, and random forest methods in the prediction of individual survival to second lactation in Holstein cattle.
    van der Heide EMM; Veerkamp RF; van Pelt ML; Kamphuis C; Athanasiadis I; Ducro BJ
    J Dairy Sci; 2019 Oct; 102(10):9409-9421. PubMed ID: 31447154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning to improve frequent emergency department use prediction: a retrospective cohort study.
    Chiu YM; Courteau J; Dufour I; Vanasse A; Hudon C
    Sci Rep; 2023 Feb; 13(1):1981. PubMed ID: 36737625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated En Masse Machine Learning Model Generation Shows Comparable Performance as Classic Regression Models for Predicting Delayed Graft Function in Renal Allografts.
    Jen KY; Albahra S; Yen F; Sageshima J; Chen LX; Tran N; Rashidi HH
    Transplantation; 2021 Dec; 105(12):2646-2654. PubMed ID: 33560727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.
    Stylianou N; Akbarov A; Kontopantelis E; Buchan I; Dunn KW
    Burns; 2015 Aug; 41(5):925-34. PubMed ID: 25931158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporally informed random forests for suicide risk prediction.
    Bayramli I; Castro V; Barak-Corren Y; Madsen EM; Nock MK; Smoller JW; Reis BY
    J Am Med Inform Assoc; 2021 Dec; 29(1):62-71. PubMed ID: 34725687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting urinary tract infections in the emergency department with machine learning.
    Taylor RA; Moore CL; Cheung KH; Brandt C
    PLoS One; 2018; 13(3):e0194085. PubMed ID: 29513742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method.
    Huang JC; Tsai YC; Wu PY; Lien YH; Chien CY; Kuo CF; Hung JF; Chen SC; Kuo CH
    Comput Methods Programs Biomed; 2020 Oct; 195():105536. PubMed ID: 32485511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients].
    Tang CQ; Li JQ; Xu DY; Liu XB; Hou WJ; Lyu KY; Xiao SC; Xia ZF
    Zhonghua Shao Shang Za Zhi; 2018 Jun; 34(6):343-348. PubMed ID: 29961290
    [No Abstract]   [Full Text] [Related]  

  • 18. Enhancing Health Equity by Predicting Missed Appointments in Health Care: Machine Learning Study.
    Yang Y; Madanian S; Parry D
    JMIR Med Inform; 2024 Jan; 12():e48273. PubMed ID: 38214974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning-based models to support decision-making in emergency department triage for patients with suspected cardiovascular disease.
    Jiang H; Mao H; Lu H; Lin P; Garry W; Lu H; Yang G; Rainer TH; Chen X
    Int J Med Inform; 2021 Jan; 145():104326. PubMed ID: 33197878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Sydney Triage to Admission Risk Tool (START2) using machine learning techniques to support disposition decision-making.
    Rendell K; Koprinska I; Kyme A; Ebker-White AA; Dinh MM
    Emerg Med Australas; 2019 Jun; 31(3):429-435. PubMed ID: 30469164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.