BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

660 related articles for article (PubMed ID: 35396505)

  • 1. Progression in translational research on spinal cord injury based on microenvironment imbalance.
    Fan B; Wei Z; Feng S
    Bone Res; 2022 Apr; 10(1):35. PubMed ID: 35396505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional biomaterials for modulating the dysfunctional pathological microenvironment of spinal cord injury.
    Ma D; Fu C; Li F; Ruan R; Lin Y; Li X; Li M; Zhang J
    Bioact Mater; 2024 Sep; 39():521-543. PubMed ID: 38883317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exosome-mediated repair of spinal cord injury: a promising therapeutic strategy.
    Yu T; Yang LL; Zhou Y; Wu MF; Jiao JH
    Stem Cell Res Ther; 2024 Jan; 15(1):6. PubMed ID: 38167108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotechnology for the Treatment of Spinal Cord Injury.
    Zimmermann R; Vieira Alves Y; Sperling LE; Pranke P
    Tissue Eng Part B Rev; 2021 Aug; 27(4):353-365. PubMed ID: 33135599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microenvironment Imbalance of Spinal Cord Injury.
    Fan B; Wei Z; Yao X; Shi G; Cheng X; Zhou X; Zhou H; Ning G; Kong X; Feng S
    Cell Transplant; 2018 Jun; 27(6):853-866. PubMed ID: 29871522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair of the Injured Spinal Cord by Schwann Cell Transplantation.
    Fu H; Hu D; Chen J; Wang Q; Zhang Y; Qi C; Yu T
    Front Neurosci; 2022; 16():800513. PubMed ID: 35250447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regenerative rehabilitation with conductive biomaterials for spinal cord injury.
    Kiyotake EA; Martin MD; Detamore MS
    Acta Biomater; 2022 Feb; 139():43-64. PubMed ID: 33326879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application and prospects of somatic cell reprogramming technology for spinal cord injury treatment.
    Yang R; Pan J; Wang Y; Xia P; Tai M; Jiang Z; Chen G
    Front Cell Neurosci; 2022; 16():1005399. PubMed ID: 36467604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
    Lv B; Zhang X; Yuan J; Chen Y; Ding H; Cao X; Huang A
    Stem Cell Res Ther; 2021 Jan; 12(1):36. PubMed ID: 33413653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Astrocyte transplantation for repairing the injured spinal cord.
    Zheng X; Wang W
    J Biomed Res; 2022 Jun; 36(5):312-320. PubMed ID: 36056564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decellularization alters the unfavorable regenerative adverse microenvironment of the injured spinal cord to support neurite outgrowth.
    Hu J; Shangguan J; Askar P; Xu J; Sun H; Zhou S; Zhu C; Su W; Gu Y
    Ann Transl Med; 2022 Sep; 10(17):934. PubMed ID: 36172103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time is spine: a review of translational advances in spinal cord injury.
    Badhiwala JH; Ahuja CS; Fehlings MG
    J Neurosurg Spine; 2018 Dec; 30(1):1-18. PubMed ID: 30611186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electro-acupuncture and its combination with adult stem cell transplantation for spinal cord injury treatment: A summary of current laboratory findings and a review of literature.
    Zeng YS; Ding Y; Xu HY; Zeng X; Lai BQ; Li G; Ma YH
    CNS Neurosci Ther; 2022 May; 28(5):635-647. PubMed ID: 35174644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of"Spinal cord fusion" in spinal cord injury repair and its neurological mechanism.
    Shen T; Zhang W; Wang X; Ren X
    Heliyon; 2024 Apr; 10(8):e29422. PubMed ID: 38638967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomaterials targeting the microenvironment for spinal cord injury repair: progression and perspectives.
    Gao Y; Wang Y; Wu Y; Liu S
    Front Cell Neurosci; 2024; 18():1362494. PubMed ID: 38784712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal therapy strategies based on hydrogels for the repair of spinal cord injury.
    Wang Y; Lv HQ; Chao X; Xu WX; Liu Y; Ling GX; Zhang P
    Mil Med Res; 2022 Apr; 9(1):16. PubMed ID: 35410314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The research landscape of immunology research in spinal cord injury from 2012 to 2022.
    Zheng B; Kuang Y; Yuan D; Huang H; Liu S
    JOR Spine; 2023 Sep; 6(3):e1261. PubMed ID: 37780822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of the dynamic model of SCI rehabilitation using bidirectional stimulation and its application in rehabilitating with BCI.
    Cui Z; Lin J; Fu X; Zhang S; Li P; Wu X; Wang X; Chen W; Zhu S; Li Y
    Cogn Neurodyn; 2023 Feb; 17(1):169-181. PubMed ID: 36704625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats.
    Ban DX; Ning GZ; Feng SQ; Wang Y; Zhou XH; Liu Y; Chen JT
    Regen Med; 2011 Nov; 6(6):707-20. PubMed ID: 22050523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exosomes Derived From Pericytes Improve Microcirculation and Protect Blood-Spinal Cord Barrier After Spinal Cord Injury in Mice.
    Yuan X; Wu Q; Wang P; Jing Y; Yao H; Tang Y; Li Z; Zhang H; Xiu R
    Front Neurosci; 2019; 13():319. PubMed ID: 31040762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.