These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35396525)

  • 1. Pseudoprogression prediction in high grade primary CNS tumors by use of radiomics.
    Ari AP; Akkurt BH; Musigmann M; Mammadov O; Blömer DA; Kasap DNG; Henssen DJHA; Nacul NG; Sartoretti E; Sartoretti T; Backhaus P; Thomas C; Stummer W; Heindel W; Mannil M
    Sci Rep; 2022 Apr; 12(1):5915. PubMed ID: 35396525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent.
    Mammadov O; Akkurt BH; Musigmann M; Ari AP; Blömer DA; Kasap DNG; Henssen DJHA; Nacul NG; Sartoretti E; Sartoretti T; Backhaus P; Thomas C; Stummer W; Heindel W; Mannil M
    Heliyon; 2022 Aug; 8(8):e10023. PubMed ID: 35965975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing preoperative risk of STR in skull meningiomas using MR radiomics and machine learning.
    Musigmann M; Akkurt BH; Krähling H; Brokinkel B; Henssen DJHA; Sartoretti T; Nacul NG; Stummer W; Heindel W; Mannil M
    Sci Rep; 2022 Aug; 12(1):14043. PubMed ID: 35982218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T
    Sun YZ; Yan LF; Han Y; Nan HY; Xiao G; Tian Q; Pu WH; Li ZY; Wei XC; Wang W; Cui GB
    BMC Med Imaging; 2021 Feb; 21(1):17. PubMed ID: 33535988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimodal MRI-Based Radiomic Nomogram for the Early Differentiation of Recurrence and Pseudoprogression of High-Grade Glioma.
    Jing H; Yang F; Peng K; Qin D; He Y; Yang G; Zhang H
    Biomed Res Int; 2022; 2022():4667117. PubMed ID: 36246986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Potential Use of Radiomics with Pre-Radiation Therapy MR Imaging in Predicting Risk of Pseudoprogression in Glioblastoma Patients.
    Baine M; Burr J; Du Q; Zhang C; Liang X; Krajewski L; Zima L; Rux G; Zhang C; Zheng D
    J Imaging; 2021 Jan; 7(2):. PubMed ID: 34460616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Seropositivity in Suspected Autoimmune Encephalitis by Use of Radiomics: A Radiological Proof-of-Concept Study.
    Stake J; Spiekers C; Akkurt BH; Heindel W; Brix T; Mannil M; Musigmann M
    Diagnostics (Basel); 2024 May; 14(11):. PubMed ID: 38893597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors.
    Park YW; Choi YS; Ahn SS; Chang JH; Kim SH; Lee SK
    Korean J Radiol; 2019 Sep; 20(9):1381-1389. PubMed ID: 31464116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated machine learning to predict the co-occurrence of isocitrate dehydrogenase mutations and O
    Zhang S; Sun H; Su X; Yang X; Wang W; Wan X; Tan Q; Chen N; Yue Q; Gong Q
    J Magn Reson Imaging; 2021 Jul; 54(1):197-205. PubMed ID: 33393131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach.
    Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y
    Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction.
    Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK
    Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conventional magnetic resonance imaging-based radiomic signature predicts telomerase reverse transcriptase promoter mutation status in grade II and III gliomas.
    Jiang C; Kong Z; Zhang Y; Liu S; Liu Z; Chen W; Liu P; Liu D; Wang Y; Lyu Y; Zhao D; Wang Y; You H; Feng F; Ma W
    Neuroradiology; 2020 Jul; 62(7):803-813. PubMed ID: 32239241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain.
    Su X; Chen N; Sun H; Liu Y; Yang X; Wang W; Zhang S; Tan Q; Su J; Gong Q; Yue Q
    Neuro Oncol; 2020 Mar; 22(3):393-401. PubMed ID: 31563963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomics Nomogram Building From Multiparametric MRI to Predict Grade in Patients With Glioma: A Cohort Study.
    Wang Q; Li Q; Mi R; Ye H; Zhang H; Chen B; Li Y; Huang G; Xia J
    J Magn Reson Imaging; 2019 Mar; 49(3):825-833. PubMed ID: 30260592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation of machine learning methods in delta-radiomics feature analysis.
    Chang Y; Lafata K; Sun W; Wang C; Chang Z; Kirkpatrick JP; Yin FF
    PLoS One; 2019; 14(12):e0226348. PubMed ID: 31834910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomics-Based Machine Learning to Predict Recurrence in Glioma Patients Using Magnetic Resonance Imaging.
    Hu G; Hu X; Yang K; Yu Y; Jiang Z; Liu Y; Liu D; Hu X; Xiao H; Zou Y; You Y; Liu H; Chen J
    J Comput Assist Tomogr; 2023 Jan-Feb 01; 47(1):129-135. PubMed ID: 36194851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas.
    Jiang C; Kong Z; Liu S; Feng S; Zhang Y; Zhu R; Chen W; Wang Y; Lyu Y; You H; Zhao D; Wang R; Wang Y; Ma W; Feng F
    Eur J Radiol; 2019 Dec; 121():108714. PubMed ID: 31704598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas.
    Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS
    World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
    Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O
    Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.