BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 35396665)

  • 41. Bi-parametric magnetic resonance imaging based radiomics for the identification of benign and malignant prostate lesions: cross-vendor validation.
    Ji X; Zhang J; Shi W; He D; Bao J; Wei X; Huang Y; Liu Y; Chen JC; Gao X; Tang Y; Xia W
    Phys Eng Sci Med; 2021 Sep; 44(3):745-754. PubMed ID: 34075559
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MRI radiomics-based machine-learning classification of bone chondrosarcoma.
    Gitto S; Cuocolo R; Albano D; Chianca V; Messina C; Gambino A; Ugga L; Cortese MC; Lazzara A; Ricci D; Spairani R; Zanchetta E; Luzzati A; Brunetti A; Parafioriti A; Sconfienza LM
    Eur J Radiol; 2020 Jul; 128():109043. PubMed ID: 32438261
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A radiomics approach for automated diagnosis of ovarian neoplasm malignancy in computed tomography.
    Li S; Liu J; Xiong Y; Pang P; Lei P; Zou H; Zhang M; Fan B; Luo P
    Sci Rep; 2021 Apr; 11(1):8730. PubMed ID: 33888749
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Application of machine learning model to predict osteoporosis based on abdominal computed tomography images of the psoas muscle: a retrospective study.
    Huang CB; Hu JS; Tan K; Zhang W; Xu TH; Yang L
    BMC Geriatr; 2022 Oct; 22(1):796. PubMed ID: 36229793
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A combined radiomics and clinical variables model for prediction of malignancy in T2 hyperintense uterine mesenchymal tumors on MRI.
    Wang T; Gong J; Li Q; Chu C; Shen W; Peng W; Gu Y; Li W
    Eur Radiol; 2021 Aug; 31(8):6125-6135. PubMed ID: 33486606
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Malignancy risk stratification of cystic renal lesions based on a contrast-enhanced CT-based machine learning model and a clinical decision algorithm.
    Dana J; Lefebvre TL; Savadjiev P; Bodard S; Gauvin S; Bhatnagar SR; Forghani R; Hélénon O; Reinhold C
    Eur Radiol; 2022 Jun; 32(6):4116-4127. PubMed ID: 35066631
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A radiograph-based deep learning model improves radiologists' performance for classification of histological types of primary bone tumors: A multicenter study.
    Xie Z; Zhao H; Song L; Ye Q; Zhong L; Li S; Zhang R; Wang M; Chen X; Lu Z; Yang W; Zhao Y
    Eur J Radiol; 2024 Jul; 176():111496. PubMed ID: 38733705
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Using Machine Learning to Unravel the Value of Radiographic Features for the Classification of Bone Tumors.
    Pan D; Liu R; Zheng B; Yuan J; Zeng H; He Z; Luo Z; Qin G; Chen W
    Biomed Res Int; 2021; 2021():8811056. PubMed ID: 33791381
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Added Value of Radiomics on Mammography for Breast Cancer Diagnosis: A Feasibility Study.
    Mao N; Yin P; Wang Q; Liu M; Dong J; Zhang X; Xie H; Hong N
    J Am Coll Radiol; 2019 Apr; 16(4 Pt A):485-491. PubMed ID: 30528092
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Machine learning-based prognostic modeling using clinical data and quantitative radiomic features from chest CT images in COVID-19 patients.
    Shiri I; Sorouri M; Geramifar P; Nazari M; Abdollahi M; Salimi Y; Khosravi B; Askari D; Aghaghazvini L; Hajianfar G; Kasaeian A; Abdollahi H; Arabi H; Rahmim A; Radmard AR; Zaidi H
    Comput Biol Med; 2021 May; 132():104304. PubMed ID: 33691201
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features.
    Bernatz S; Ackermann J; Mandel P; Kaltenbach B; Zhdanovich Y; Harter PN; Döring C; Hammerstingl R; Bodelle B; Smith K; Bucher A; Albrecht M; Rosbach N; Basten L; Yel I; Wenzel M; Bankov K; Koch I; Chun FK; Köllermann J; Wild PJ; Vogl TJ
    Eur Radiol; 2020 Dec; 30(12):6757-6769. PubMed ID: 32676784
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Machine learning combined with radiomics and deep learning features extracted from CT images: a novel AI model to distinguish benign from malignant ovarian tumors.
    Jan YT; Tsai PS; Huang WH; Chou LY; Huang SC; Wang JZ; Lu PH; Lin DC; Yen CS; Teng JP; Mok GSP; Shih CT; Wu TH
    Insights Imaging; 2023 Apr; 14(1):68. PubMed ID: 37093321
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features.
    Yin P; Mao N; Zhao C; Wu J; Sun C; Chen L; Hong N
    Eur Radiol; 2019 Apr; 29(4):1841-1847. PubMed ID: 30280245
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Machine Learning Prediction of Liver Stiffness Using Clinical and T2-Weighted MRI Radiomic Data.
    He L; Li H; Dudley JA; Maloney TC; Brady SL; Somasundaram E; Trout AT; Dillman JR
    AJR Am J Roentgenol; 2019 Sep; 213(3):592-601. PubMed ID: 31120779
    [No Abstract]   [Full Text] [Related]  

  • 55. Machine and Deep Learning Based Radiomics Models for Preoperative Prediction of Benign and Malignant Sacral Tumors.
    Yin P; Mao N; Chen H; Sun C; Wang S; Liu X; Hong N
    Front Oncol; 2020; 10():564725. PubMed ID: 33178593
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Machine learning-based CT radiomics features for the prediction of pulmonary metastasis in osteosarcoma.
    Pereira HM; Leite Duarte ME; Ribeiro Damasceno I; de Oliveira Moura Santos LA; Nogueira-Barbosa MH
    Br J Radiol; 2021 Aug; 94(1124):20201391. PubMed ID: 34111978
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Independent validation of machine learning in diagnosing breast Cancer on magnetic resonance imaging within a single institution.
    Ji Y; Li H; Edwards AV; Papaioannou J; Ma W; Liu P; Giger ML
    Cancer Imaging; 2019 Sep; 19(1):64. PubMed ID: 31533838
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting.
    Sakai Y; Yang C; Kihira S; Tsankova N; Khan F; Hormigo A; Lai A; Cloughesy T; Nael K
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121211
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Distinguishing granulomas from adenocarcinomas by integrating stable and discriminating radiomic features on non-contrast computed tomography scans.
    Khorrami M; Bera K; Thawani R; Rajiah P; Gupta A; Fu P; Linden P; Pennell N; Jacono F; Gilkeson RC; Velcheti V; Madabhushi A
    Eur J Cancer; 2021 May; 148():146-158. PubMed ID: 33743483
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Applying Machine Learning Analysis Based on Proximal Femur of Abdominal Computed Tomography to Screen for Abnormal Bone Mass in Femur.
    Yuan X; Liang Y; Yang H; Feng L; Sun H; Li C; Qin J
    Acad Radiol; 2024 May; 31(5):2003-2010. PubMed ID: 37973518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.