These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 35396977)
1. Transcriptome alterations of radish shoots exposed to cadmium can be interpreted in the context of leaf senescence. Soleimannejad Z; Sadeghipour HR; Abdolzadeh A; Golalipour M; Bakhtiarizadeh MR Protoplasma; 2023 Jan; 260(1):35-62. PubMed ID: 35396977 [TBL] [Abstract][Full Text] [Related]
2. De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish (Raphanus sativus L.). Xu L; Wang Y; Liu W; Wang J; Zhu X; Zhang K; Yu R; Wang R; Xie Y; Zhang W; Gong Y; Liu L Plant Sci; 2015 Jul; 236():313-23. PubMed ID: 26025544 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to Lead (Pb) stress with next generation sequencing. Wang Y; Xu L; Chen Y; Shen H; Gong Y; Limera C; Liu L PLoS One; 2013; 8(6):e66539. PubMed ID: 23840502 [TBL] [Abstract][Full Text] [Related]
4. Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants. Xu L; Zhang F; Tang M; Wang Y; Dong J; Ying J; Chen Y; Hu B; Li C; Liu L J Pineal Res; 2020 Aug; 69(1):e12659. PubMed ID: 32323337 [TBL] [Abstract][Full Text] [Related]
5. Dissecting Root Proteome Changes Reveals New Insight into Cadmium Stress Response in Radish (Raphanus sativus L.). Xu L; Wang Y; Zhang F; Tang M; Chen Y; Wang J; Karanja BK; Luo X; Zhang W; Liu L Plant Cell Physiol; 2017 Nov; 58(11):1901-1913. PubMed ID: 29016946 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. Xu L; Wang Y; Zhai L; Xu Y; Wang L; Zhu X; Gong Y; Yu R; Limera C; Liu L J Exp Bot; 2013 Nov; 64(14):4271-87. PubMed ID: 24014874 [TBL] [Abstract][Full Text] [Related]
7. De novo transcriptome sequencing of radish (Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism. Wang Y; Pan Y; Liu Z; Zhu X; Zhai L; Xu L; Yu R; Gong Y; Liu L BMC Genomics; 2013 Nov; 14(1):836. PubMed ID: 24279309 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome Profiling, Physiological and Biochemical Analyses Reveal Comprehensive Insights in Cadmium Stress in Yang T; Pang B; Zhou L; Gu L; Wang H; Du X; Wang H; Zhu B Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279259 [TBL] [Abstract][Full Text] [Related]
9. Selenium mitigates cadmium toxicity by preventing oxidative stress and enhancing photosynthesis and micronutrient availability on radish (Raphanus sativus L.) cv. Cherry Belle. Auobi Amirabad S; Behtash F; Vafaee Y Environ Sci Pollut Res Int; 2020 Apr; 27(11):12476-12490. PubMed ID: 31997246 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments. Leng Y; Li Y; Wen Y; Zhao H; Wang Q; Li SW Ecotoxicol Environ Saf; 2020 Nov; 204():111098. PubMed ID: 32798749 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome and metabolome profiling to elucidate mechanisms underlying the blue discoloration of radish roots during storage. Zhang Y; Zhao X; Ma Y; Zhang L; Jiang Y; Liang H; Wang D Food Chem; 2021 Nov; 362():130076. PubMed ID: 34090048 [TBL] [Abstract][Full Text] [Related]
12. Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb &Cd stress response of radish roots. Wang Y; Xu L; Shen H; Wang J; Liu W; Zhu X; Wang R; Sun X; Liu L Sci Rep; 2015 Dec; 5():18296. PubMed ID: 26673153 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic analysis of Verbena bonariensis roots in response to cadmium stress. Wang MQ; Bai ZY; Xiao YF; Li Y; Liu QL; Zhang L; Pan YZ; Jiang BB; Zhang F BMC Genomics; 2019 Nov; 20(1):877. PubMed ID: 31747870 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.). Sun X; Xu L; Wang Y; Luo X; Zhu X; Kinuthia KB; Nie S; Feng H; Li C; Liu L Plant Cell Rep; 2016 Feb; 35(2):329-46. PubMed ID: 26518430 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analysis of rice (Oryza sativa L.) shoots responsive to cadmium stress. Sun L; Wang J; Song K; Sun Y; Qin Q; Xue Y Sci Rep; 2019 Jul; 9(1):10177. PubMed ID: 31308454 [TBL] [Abstract][Full Text] [Related]
16. Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish ( Kang JN; Won SY; Seo MS; Lee J; Lee SM; Kwon SJ; Kim JS Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32785002 [TBL] [Abstract][Full Text] [Related]
17. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Schützendübel A; Polle A J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381 [TBL] [Abstract][Full Text] [Related]
18. The regulatory metabolic networks of the Brassica campestris L. hairy roots in response to cadmium stress revealed from proteome studies combined with a transcriptome analysis. Sun Y; Liu X; Li W; Wang X; Zhong X; Gao Y; Xu H; Hu H; Zhang L; Cheng X; Yan Q Ecotoxicol Environ Saf; 2023 Sep; 263():115214. PubMed ID: 37413944 [TBL] [Abstract][Full Text] [Related]
19. Longitudinal physiological and transcriptomic analyses reveal the short term and long term response of Synechocystis sp. PCC6803 to cadmium stress. Tian Q; Wang J; Cui L; Zeng W; Qiu G; Hu Q; Peng A; Zhang D; Shen L Chemosphere; 2022 Sep; 303(Pt 1):134727. PubMed ID: 35513082 [TBL] [Abstract][Full Text] [Related]
20. A meta-analysis of transcriptomic profiles reveals molecular pathways response to cadmium stress of Gramineae. Fan W; Liu C; Cao B; Ma S; Hu J; Xiang Z; Zhao A Ecotoxicol Environ Saf; 2021 Feb; 209():111816. PubMed ID: 33360213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]